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PREFACE

The baseline geodetic algorithms presented in this document were compiled to
provide a standard for accuracy measurement and for isolation of errors in
radar and optical tracking devices. Im implementing the algorithms, the first
emphasis .was placed on accuracy and the second on speed. In all cases, the
programs yield accuracies that are at least two orders .of magnitude better than
the LSB-values associated with existing radar tracking equipment. Most of "the
algorithms employ mathéematical.techniques well known in the field of ‘geodetics. ..
However, in certain cases, spéecial high-accuracy algorithms, previously
developed by GMD Systems, were used because .the normal solution techniques were
unable to achieve the results desired, For example, the refraction correction
method provided in chapter 6 uses a GMD~developed algorithm in which the
refraction gradient is.-used to compute the amount of bending which occurs in
each incremental projection of a wave front traveling through a refracting
medium, The program operates on a desktop (i2-digit) computer and, in a couple
of hundred iterations, yields results that are almost identical .to those-
obtained from the JSC.double-precision (29-digit) Cyber program, vhich tequires
up to 50,000 iterations for low-altitude solutions.

Another GMD algorithm was used to obtain a faster closed—form method for
converting off-spheroid Universal Space Rectangular coordinates. to geodetic
latitude, longitude, and altitude. This solution method is provided in chapter
5 (GMD Closed-Form Solution), and it is usable with any spheroid .datum
reference. It is not quite as fast as the two approximation methods with which
it is compared, but it is faster than the other closed—form solution described
in chapter §..

Since the baseline programs will be used as. a measurement standard to which
data from operational systems will be compared, it was. imperative that. the
baseline programs have provable accuracy. For this reason, considerable.time
was spent .in developing validation techniques. that could demonstrate the
accuracies of the algorithms to anyone who might feel skeptical about the .
results., Three methods are considered valid. for this purpose. The first
selects. special trivial cases where standard trigonometric relations can be
applied to get comparison values. Since. the program exercises the same
algorithms. for trivial as for more. complex non-trivial solutions, this is
considered to be a sound validation technique if correctly planned, The second
validation method compares results of the baseline programs .with data published
by USCGS, DMAC, and other mapping and geodetic. groups whose work is generally
held as a standard for survey and geodetic measurement purposes.. The third
method compares results obtained using one mathematical approach to.results
obtained by other different.solution methods. If two different solution
techniques yield the same results, then this is accepted as_an additional
confidence factor.

Radar device (pedestal and antenna) corrections were eliminated from this
document since they were covered in an earlier publilation, _

Robert James
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CHAPTER 1

MAPPING

The mapping routines provided in the GMD baseline geodetic programs consist of
two subprograms, each with several operating modes. ‘The .subprograms and .
operating modés are:

A, . Geodetic-Lambert Subprogram .

1. Geodetic to Lambert conversion mode (general)

2. Lambert to.geodetic conversion.mode (general)

3. Geodetic to Lambert conversion mode (California zones) ..
4.. Lambert to geodetic comversion mode (California zones)

B. Geodetic-Transverse Mercator_ Subprogram.

.. Geodetic. to transverse Mercator conversion mode. .general)
. Transverse Mercator to geodetic conversion mode (general)
. Geodetic to transversé Mercator conversion mode (Nevada zones)
. Transverse Mercator to geodetic conversion mode (Nevada zones)

D W

This chapter presents thé.general mapping equations and. concepts which are
common to the Lambert and Mercator transformations and therefore applicable to
both subprograms., The mathematical routines unique to the Lambert.
transformations are presented in chapter.2, and those for the Mercator
transformation are given.in chapter 3.

The mathematical treatments presented in this document are thought to be
sufficiently complete to enable a user to grasp the basic fundamentals of. the
various transformation equations needed to prepare or. modify mapping or
geodetic programs employing Lambert conformal and transverse Mercator conformal
mathematics. However, should supplemental information be needed, detailed
derivations. for both the Lambert and.transverse Mercator transformations can be

found in reference 1, and supporting data are provided in references 2 and 3.

General Mapping Theory

Types of Mapping Projections

Many -types. of projections are used in the science of mapping. These include
spherical, conical, and ¢ylindrical mappings, on a point-to-point basis, of the.
¢oordinates of the earth spheroid onto a new surface selected.to meet a certain
mapping application. P.obably the simplest projection is.the perspective or
geometri¢ type, in which images are mapped at. the exact point on the new

surface where a.ray drawn from the projecting origin through.a. spheroid point __

intersects the mapping surface.. Unfortunately, perspective projections
introduce too much distortion to be practical im most mapping applications.

1-1
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A second type consists of a general group of nonperspective projections which .
are not.projected in the usual sense of the term, but are mathematically
modificd so. as to suit onc or more particular requirements.,. Although
distortion is always present in. a planar representation of a spheroidal
surface, byvmathematicnlly,forcing certain conditions to be¢ met, nonperspective
projections can be readily adapted to individual mapping needs, and they are.

i

1

therefore more useful than perspective projections. Thus, in many cases, it is_

possible to derive transformation equations such that areas transform
accurately from those on the spheroid surface. to those on the mapped surface.
In other cases, it is possible to insure that the scale at any given point over
the. entire mapping projection is the same in all directions, even though the
scale varies from one part of the projection to anocher., This type of
projection preserves angles and is_said to be orthomorphic or conformal.

In navigational applications, the rrimary concern is that heading angles
measured on the map be the same as those thet would be. measured on the earth
spheroid. Hence, navigational charts nearly always employ one of the various
types of orthomorphic projections—most .commonly the Lambert conformal
projection or thé transverse Mercator conformal .projection,

Orthogonal Curvilinear Coordinate Systems

A planar curvilinear coordinate system is said tc exist when two. single
parameter families of curves can be defined such that any single point in the.
région under consideration lies on one and only one curve in.each of the two
families of curves. For example, nearly any point on the earth spheroid can be
fully defined by _the intersection of unique latitude (parallel) and longitude .
(meridian) arcs, For this system to also be orthogonal, all of the. infinite
number of possible intersections.between the two.families of curves must occur.
at right angles to one another. Obviously, this condition is. true .on the earth
spheroid, and, if angles are to be preserved, it must also be true on.the two-
dimensional mapping surface. ..

It was noted that the earth's parallels and meridians form a curvilinear ..
coordinate system at nearly every poin. on the .earth, but not all points.
Obviously, at the two poles, the condition for uniqueness is not met by the

meridians since all meridians pass through the same point, causing the. azimuth
measurée to become indeterminate.

Conformal Isometric Projection of One Surface .Onto Another
A transformation is said to be orthomorphic if the form of .incremental parts. of
8 figure retain the same . shape-through the transformation. However, the shape
of large parts can and will change, A surface has an orthomorphic represen-

tation on another if a ~ne“to-one correspondence can be established between

points in such a manncr that angles between corresponding lines on the two
surfaces are_equal,

Figg:clelureptesents a8 plane on which the set of ¢urvilinear orthogonal

1-2 -
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¢oordinates are defined.as t and A, On this planc the length of a
differential arc segment is given by the relation

ds? = d¢? + .dA%, (1.1
If there exists another surface on which a differential arc could be

represented.by the same.curvilinear coordinates. and a magnification term k in
the form :

dsi = k2(dv® + dA2) . (1.2)

then it is obviously possible to achieve a one-to-one relationship between the
points on the two surfaces.

ds

de

dA

Figure 1.1,

It is important to note that for the orthomorphic property to exist, it is not i
necessary that k be the same value at all points over the surface, and it will "
not be the. same.in the derivations which follow., However, since at any given
point the value of k magnifies both of tie coordinates equally, then it is
obvious that the angle between the differential segment ds. and the two
coordinate elements dt and dA will be the same on the initial and

transformed surfaces, thus . preserving the shape of small (incremental) forms .
through the transformation.. Satisfaction of equations (1,1) and (1,2) also ,
insures that the coordinate axes t_and A are orthogonal at all points onm i
both surfaces. . -

If a relationship between two surfaces could be established such that equations
(1.1).and (1.2) were satisfied, then segment angles and incremental shapes
would be preserved. A final requirement of the transformation is that the
transformation functions be analytic throughout .the region to be mapped., A
function is said to be analytic if it is continuously differcntiable throughout
the region of interest (that is, all higher order derivatives exist). The
analytic nature of a function can be shown by application of the Cauchy-Riemann
equations, which are derived later in this chapter. —_— 1
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The Geometry of the Spheroid.

The following standard spheroidal relationships aro necessary £or derivation of
transformation oquations, .They_are well known and presented without proof,

A. The Spheroid: The .equation of the spheroid in Cartésian form is given
below, The symbol a represents the length of the semimajor axis of the .
spheroid, and the symbol b represents the léngth of the semiminor axis of
th¢ spheroid,

x3/a2. 4+ y*/a2 + 22/b% =1 (1.3

B. Fecceentricity, e: Eccentricity, a.relationship between the semimajor
and semiminor._axes of an ellipse¢, is given by

g2 = (a2 + b3)/a2, (1.4)
C. Meridional Radius of Curvature, R:. The north-south (N-S) radius of curyv- -
ature at any point on the spheroid is the distance measured along the
normal .line from. the surface of the.spheroid to the point which is the
center of curvature of the spheroid meridian., It is given by thé equation
R = a(l = g2)/(1 - e2sin3y)?3/2 (1.5)
where .u is the geodetic latitude of the point. . f
D. Fast-West Radius of Curvature, N: The east-west. (E-W) radius of curvature
at any point on the spheroid is the distance measured along the normal line
from the -surface of the spheroid to the semiminor axis. . It is obtained
from the equation

N.=-a/(1 = g2sin2p)1/3, (1.6).

E. Meridional Arc, Sp: The true.length of the meridional arc from the equator
to latitude p is given by

m
s, =.jn du. . (1.7)
(]

F. Geodetic latitude, p: Geodetic latitude of a point P located .on the

spheroid surface is defined as the angle between the spheroid normal line
at P and the spheroid equator,

G. Geocentric latitude, &: Geocentric latitude of a point P located on
the .spheroid surface. is defined as the angle between the spheroid equator
and the line from the spheroid origin and through the point P,

H... Geodetic to Geocentrié¢ Latitude Conversion: The conversion from geodetic
latitude, p, to geocentric latitude, &, is givén by

1-4




tan § = (1 = g2)tan y, (1.8)

Inéremental. Spheroid Segment

As shown 4n figure 1,2

» tho clement of length on the surface of the spheraid ig
given by

ds* = R2du? + Nigos?p dA?. (1.9).

or

3 2
ds? = Nagos?p [—3~42——»+ dxz] )

TEYYE (1.10)
'N cos M.
Spheroid
surface
R.dp
\\~N cos p dA
//
/ a7 r
7 el VN 2
——
////// AN
\A/// » dA >
\\(‘ Nep
Figure 1.2,
Substituting the values for R and N given in equations (1,5) and (1.6),
equation (1,10) becomes
s3 = —82%cos3u [ (1 - g2)2 duya 2 '
ds 1 - eg3ginzy [cds’gilm:;ﬁﬁsinfp)’ ¥ di ]’ (1.19
Now if dv is defined as
e ea (1. = €3)dy ;
dr = %55 (1l = g2sin2p) (1.12)

PO T R e—




! and k2 as

{

‘ _ .83 cos?u

\ kd = 52 eisinip’ i (1.13)..
).«

: ds2 becomes

A )

' ds? = k3(dv? + da2), (1.14)
L41\

F which is identical to equation (1,2),

Incremental Spherical Segment

If a derivation similar to that shown in the preceding section is followed for
a sphere-where one wishes to obtain isometric parameters B and A such that an
incremental. element of arc length maps conformally onto another surface, it has
been shown that the incremental element of length must_be of the form

ds? = k2(dt? + da?), (1.15)

For a sphere, if we let the conformal latitude be given by B, the longitude by )

A, and the radius.by p, then the length of the incremeatal segmént, as 1
shown by figure 1.3, is : '

ds? = p2dP2_+ p3c0s2P dAZ oo (1.16) ;
= 2 2 _Q.QL. : 2
prcosip [cos’B +an], (1.17)

which is in the form of equation (1.15).

Figure 1.3.
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If the substitutions
dtr = dp/cos § _and k = p cos P (1.18)

are made in equation (1.17), the equation for incrémental arc lemgth on the
sphere becomes identical to equation (1,15),

ds? = k2(dt? + dA?), (1,19)
Solving the differential equation (1,18) for t.yields
(.48
T =) Tos B (1.20)

which on integration yields

Ve

t = In tan (£V+m )». . (1.21)

Thus, the latitude and longitude coordinates on a.sphere (B, A) can be.
conformally mapped onto a.plane in terms of Tt and A in the same manner as
shown for the sphercid,

Conformal Mapping of a Spheroid Onto a Sphere

The sphere whose linear element is given by equation (1.19) is called the
conformal sphere since equation (1,19) insures that the mapping of the points
of the sphere onto a plane will be _orthomorphic. In addition, if the
incremental arc of any one surface can be shown to map onto any other surface
vhile preserving the relations

ds%

kZ(de? + dA2) (1.22)

and

ds?

k2(dt? + dA2),. (1.23)

then the mapping bétween those twn surfaces. will also be orthomorphic. It .has
already been shown that such relations exist for both the spheroid and the

sphere (egs. (1.10) and (1.17)). Thus it is possible to equate relations for

dv? from the sphere and the spheroid to_yield

- dp? R2 _du?
dz? am;;g;§'= ﬁ;;;;%;, (1.24)

which makes the differential equation to be solved for the transformation

dg  _ . Radp.
cos i N cos p*’ (1.25)

The solution to this equation is easily obtained from the separate solutions
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f” already found for the spheroid and spherical éases,
' J
4 N 1
! : %
; .8 1,K [l_:_s,ﬁ.i.!l.&] - iy
; tan (§+ 3) = an (34 3) |75 toimul (1.26)
; Thus, in order. to conformally map coordinates betwe.n the spheroid and a
h conformal sphere, it is necessary to convert geodetic latitude, u, into the
X spherical conformal latitude, B, by means of equation (1.26), . Since longitude -
L"\ is the same in equations (1,10) and (1,17), it follows that -
" A=A, A (1.27)
i Magnification for the transformation is given by
ds, p_cos B ;‘
k=7z= (1.28) o

ds, Nocos pu' ~ 1

Isometric Latitude Computation

Isometric latitude, t, was defined on the spheroid by equation (1.12)..
Rearrenging terms, equation (1.11) can be rewritten as

. _du  slcos u dp
T = Sos po 1 = g3sin?p’ (1.29) 3
from which ,
du _.j‘ g3cos p dp

T o5 & T - edsindp’ . (1.30)
Integration_of equation (1,30) yields ) k
- no.u & (1 = s sin ) (1.31) .

v = 1n [ten (§ + )]+ 5 [0 i iin p)]

B

or, in its more common form,

<= in [uan (30 4) (B2 1.

Conformal Mapping of a Spheroid Onto a_Plane

"y T

It has. already been shown that for a surface to be mapped conformally onto a
plane, it is necessary that a relationship of the type
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fA ds2 = k2(dt3 + dA3) (1.33).

be found for the surface. For the spheroid, it has been shown in
cyuation (1,10) that the incéremental spheroid segment can be ropresented by

. [R2? , .
W82 = N2 cos3p [%;vseo?p dpd + d&’]. o (1.34)

Thus, for the ¢onformal mapping of a spheroid onto a plane, it is necessary that. . . .

Zi

dv =3 séc.pu dp, k2 = N2cos3u, and A = A, : (1,35)

These equations show important properties of the.conformal mapping of a
spheroid onto a plane, Specifically, v is found to be a function of. k_alone,
and A is found to be a function of A alone. Finally, by combining

equations. (1,32) and (1.35), the fundamental isometric relations for the
conformal mapping of a spheroid onto a plane can be given as

R wae o (og) EEEY] ae
0.

and

A=A (1.37)

It shculd be noted that equations (1.36) and (1.37) are valid for all conformal
mappings. of a spheroid onto a plane. The form of the mapping (for example, .
Lambert conformal, Mercator ¢onformal, or transverse Mercator conformal). is

determined by the initial conditions.used.to derive. specifi¢ transformation -
relations, .

The Cauchy-Riemann Equations

Because transformation equations empléy two independent parameters such as
(x, y) or (v, A) to define.a single point, the handling of mathematical 1
operations can sometimes be. simplified through the use of complex variableé.

theory. For example, in the case_of multiplization of (a, b) by (¢, d), using
simple aslgebra we have |

(a, b)(¢, d) = (ac - bd, be + ad). . (1,.38)

By using compléex numbers, the mathematical relationships ¢an be simplified,
Using. the term (~1)3/3.0r i, equation (1.38) can be written more conveniently as

(& + ib)(c + id) = ac.+ iad.+ ibé + i3bd

=—(a¢ - bd) + 1(bec + ad). (1.39)
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Likewise, the transformation of curvilinear longitudes and isomotri¢ latitudes.
into rectangular mapping coordinates (such as transversc Mercator coordinates)
¢an bo simplified by using complex variable thoory.
Consider the set of roctangular coordinates x and y,. Jt has beon shown that
curvilinear. parameters < and A will ¢onformally map from the spheroid ontd a_
plane, Thus, if a function cxists such that -

x + iy = f(A + i) and x - iy = f(A ~ iv), (1.40)
theén

dx ot _idy = £'(M + it)(dA + idv), (1.41)

The complex conjugate is

dx - idy = £'(A ~_iv)(dA = idt). (1.42)

Multiplying equations (1.41) and (1.42) .yields

dx3 -+ dy? = £'(A - iv)f' (A + iv)(dA3 + dt?). (1.43)
Also note that
Ly = 89X dy _ 8y _ ,0x
R T T e (1.44)

and

iy L 0%, By _ @y Bx
£'(A it) = az + iat = i - (1.45)

Equating the real and imaginary parts of cquation (1.44) or (1.45) yields

x 8y ., v _ i «
an - ox M g at’ (1.46)

which are the Cauchy-Riemann equations. If the derivatives. exist, and if
equations (1.46). are satisfied at all points .in the region, then the mapping of.
the two sets.of parameters must be ¢onformal since at any point the rate of
change of x with respect. o A équals the rate of change of y with respect. to

t©, and th2 rate of change of x with respect to Tt equals (the negative of)

the. rate of chango.of y with respect to A, Thus, at any selected point on

the mapped surface, angles must be preserved in the transformation.

re

1-10




CHAPTER 2 "i

! LAMBERT CONFORMAI. TRANSFORMATION EQUATIONS

Lambert Theory

1 It has already been shown (eq. (1.22)) that the conformal mapping of a spheroid
} onto a plane is given by

i T = J %“sec.p du and A = A, (2.1)

Thé requirements for a.Lambert conformal conic projection are:

1, The parallels must be arcs of concentric circles with centers.at the -
point 6f intersection of the meridian radials. . /!

2. All meridians must project as radial straight lines from a central
vortéx point which may lie .off the map.

3. All meridians and parallels must intersect. each other at right angles.

4. All angles on the earth's surface must be correctly represented on the
projection,.

5. The scale must.be true along the two selected standard parallels,

These conditions establish. a conformal projection of the -sphéeroid onto a cone .
that intersects the spheroid at the two standard .parallels, .

To satisfy condition 1 in terms of regular Cartesian coordinates, x and y must
be functions of v such that

x3 + y2 = K2 f(v). (2.2)

This ¢ondition, if satisfied, will cause the parallels to plot out as arcs of
concentri¢ circles,

To meet the second condition, x and y must be a function of A such that

y = m(A) x. (2.3)

re.

This condition, if satisfied, will cause the meridians_to plot out as radials
from a common origin point, ‘

Solving equations (2.2) and (2.3) for x and y yields
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- f£(x)) .\ . [£(z)] 1/2
=K (Femooi) Y k(M) (1o G37) (2.4)

If the functions x and y exist and are orthomorphic, satisfying conditions 3
and 4, the Cauchy-Riemann equations must be setisfied, Expressions for
ax/dA, 9x/3v, dy/d\, and dy/dt are given below. Note .that in equations
(2.5) to (2.13), f(1) is ropresented as f and m(A) is represented as m,

%% =K % i (2.5) .
e TN T R o (2.6) .
%f = K%ﬁ (2.7)
- Ry (2.8)

ac ~ K (DA (1 + m) /e

The Cauchy-Riemann equations (eq. (1.46)) are expressed as

ax _ dy. 9x . _ 8y .
an “ac oM g TTaa L (2.9)

from which, by substitution of equations (2.5) to (2.8) into .equations (2.9),

£ 2 m'
Tf T71 +m3t (2.10)
Since it has been shown that f is a function of <t alone and m is. a function
of A alone, equation (2.10) can be true only if both terms .in the equation
are.equal. to the same constant, which for convenience.will be called 2L.. -
Fquating each term of equation (2,10) to 2L yields.

£ .- m' .
£ =-2L and. .7 o =L, | (2.11)

or, in terms of total differentials,

[} S dm. .. _
N 2L dt and 1 + ma Ldhe . (2.12)

The solutions to equations (2.12)_are

n £(tr) = -2Ltr and tan [m(A)] = LA, (2.13)
or
f(z) = e-th and m(A) = tan LA, (2.14).
2-2
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where ¢ is the base of the system .of Napierian logarithms. Substitution of
cquations (2.14) in place of f(t) and m(A) in equations (2.4) yields

It Lt

x=Ke ““_¢os LA and y =K e " sin LA, (2.18)
Since x and y may bo given in terms of polar coordinates .r and a as

x2yrcosa and y = r sin a, (2.16)
equations (2.15) may be rewritten as

-Lt

r=Ke and o = LA.. (2.17)

Tt was previously shown that the isometric latitude, T, is given by the
relation

. ) (1_-_%)%-] ' (2.18)

T = ln tan (%.f~%) .. (2.19)

tani (Y

K‘tanL (% - %) . (2.20)

Equation (2.20) is obviously based on the use of radian measure for all angles,
In degrees, equation (2.20) becomes

r =K tan” (22, (2.21)

and, if z repreéesents conformal colatitude defined as
z =9 -8, - (2.22)
then the expressions for the polar coordinateées r and a may be written as ...

£ =K (tan 2) ' and_a = 1a. ~ (2.23)

It now remains to evaluate the constants K and L. This is accomplished by
applying the final condition that the lengths of the two standard parallels. be.
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atio of the lengths before and after the

is_condition, the r
be the same, OF

2AN,C08 B, 27LT, (2.24) -

true. To satisfy th
transformation must

from which
N, cos By T1 Ke—LT*--~e-L1*
= Iz, I7,” (2.2%5)
e e

N, cos K, T3,

t and right terms of'equation_gg:25) yields

Taking the logarithms of .the lef

- 1n N, = 1n.cos iy

1n. N, + 1ln cos 3
L= T, " T T -
1n N, = 1n Ny + 1n cos K, — 1n c0S H;
z, z, - e

1n tan ?r - 1n tan 7{

quality in the lengths . of the.parallels before

Now, by again making use of the e4q
and after the transformation,

|
|
!

2nN cos My = 2ﬂLKefL71 and 2nN,cos B, = 2nLKe"Lr3,_ (2.27)

from which
N,cos W3 N,cos B,
& (2.28)

k=" Z\L Za\L
L tan(’{) L tan(’i‘

r coordinate equations for the

This completes the derivations of the plana

Lambert conformal conic ptojection.
Geodetic to Lambert Computations
The steps to be followed in making the geodetic to Lambert conformal
transformation are as follows:! :
S
1, Detetminevthe,seodetic 1atitudes for the two standatdvparallels. E
he 1atitude of the north standarxd parallel and ]
Store

with p, being t
p, being the latitu dard parallel.

both parameters.

de of the south stan
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g 2. Enter and store the geodetic latitude and. longitude of the origin
. point selected-for.the_purtioulax,map,(pa. Ag).

3. Enter and store the seéale factor for .the particular map being used (for
; example, 500,000, 2,000,000, etc.)

4, Calculate values for N, and N, from equation (1.6) using the appli~

\ cable spheroid values of a and ¢,

.

P\ 5. Calculate values of spherical conformal latitudes By and B,

Fv corresponding to u, and p, using equations (2.18) and (2.19) ..

o 6. Determine values of conformal colatitude z, and z, from
equation (2,22), __

7. Calculate convergence, L, from equation (2,26).
8. Calculate K from equation (2.28).

9, ..Calculate the magnitude of .the apex-to-origin position vector,
T, from equation (2.23).

10, Enter the target point’s geodetic latitude and longitude, and compute

the values.of r and a by the same procedures as described above (egs. £
(2.18), (2.19), (2.22), and (2.23)). . i

11, Determine the target's position in Cartesian coordinates from the

angular relationships_ shown in figure 2.1, - ]

12, Add the bias term to x (if California Lambert), apply the necessary- %
unit conversion (for .example, to conmvert meters back to international
survey (I.S,) feet), and divide by the selected scale factor.

Lambert. to Geodetic—Computations

In the baseline Lambert to geodetic program, the forward (geodetic to Lambert)
equations are used in an iterative fashion to obtain geodetic coordinates. .from . : 1
Lambert x and y vaiues. The procedure is: —

1, Perform sieps 1.to 9.of the geodetic to Lambert sequence described im
the .previous section,

2.. Enter _scaled values of._x and y in selected units, .

-y

3. Convert to meters and full scale for computations. T

4. Obtain r and a directly from equations .(2,16) ..

S.. Enowing L and. a, obtain the value of "longitude directly from equation
(2.17), '
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6. Knowing r, K, and.L, solve cquation (2.21) for B,

7. Using this value of B as the first trial value for u, solve eduation .
(2.18). for v, and using that value of ©, obtain a comparison value
of B from equation (2.19), The difference between the actual value of

B and the computed.value of B is nearly the same as the amount of error

in u. Thus, p is adjusted by the same amount as the error in .f and a
second pass is made using equations (2,18) and .(2.19). The error in B
on the second pass will be much smaller, and it is .again
M. The iterations are continued until a value of 'u is obhtained for
which the computed value of B equals the actual value as originally
obtained from equation. (2.21).

8. VWhen the starting and ending values of B are equal, the value of B
is correct,

Four iterations are generally required before agreement is obtained to the
precision limit of the present 12=digit computing system,

California Lambert

The plane. coordinate system for the State of Califoruia consists of saven .
Lambert zomes. Transformations.for points in each of the zones. i3 aciomrlished
in the same manner as described for general Lambert transformations, «-.cept
that in the.California system a bias factor is added to the-x coor?iuate so
that the x values.are always .positive, For the first six California zones the
bias factor is an even.2,000,000 I.S, feet. For zonme 7 the brase is
4,186,692,58.1.S, feet.

The lines of separation between the zomes run approximately east and. west
following county boundaries, with zone 1 being the northernmost zone and zone 6

being the. southernmost.zone. Zome 7 is a special..zone that har been set_aside_ . ... .......

for Los Angelées County. In transition areas, two zones may be specified on
control data sheets. In the case of Edwards Air Force Base, this allows local.
control points to be. referenced to the zone 5 system.lyirg to theé north and to
the zone 7 system lying to the south and east, —

Unlike aeronautical charts which have widely separated standard parallels und
cover large. areas of the country, the standard parallels for state zones are
placed just one or two. degrees apart and the coverage areas are limited to
narrow horizontal bands that may extend over only three or four counties.. This
is done so that map convergence and magnification are sufficiently minimized
that only minor ¢orrections must be made to angle and distance measurcments
made by survey teams. In fact, much private survey work is accomplished
without regard to either magnification 6r angular convergence, and computations
are performed with flat-earth mathematics., For small parcel survcys, where
extended base legs are not involved, these calculations are often accurate
enough for many practical .é¢ommercial applications, However, for NASA of
military control nets,_in_which high=pxe i3ion, lom,-range tracking systems are
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operated, it is oxtremely important that all field work and mathematical
computations be éarried out with the best possible acocuracy and precision,

Table 2.1 lists the Lambert parameters for each of the seven California survey

zones, In the baseline geodetic program, when a.California zone has been
sélected, the program automatically initializes using the stored Lambert

parameters for that particular zone.

TABLE.2.1, CALIFORNIA SURVEY ZONES

Zone _ Olat olon  _ Bias . S lat N lat
1 39 26 00.0. 122 00 00.0__ 2,000,000 40 00 00.0 41 40 00.0
‘2 3740 00.0 122 00 00.0 2,000,000 38 20 00.0 . 39 50 00.0
3 36 30 00.0_ 120.30 00,0 2,000,000 37 04 00.0 38 26 00.0
4 36 20 00.0. 119 00 00.0 2,000,000 36 00.00.0 37 15.00.0
5 33 30 00.0 118 00 00.0 2,000,000 34 02 00.0 35 28 00.0
6. 32 10 00.0 . 116 15 00.0 2,000,000 32 47 00.0 33 53 00.0
7 22 45 43,75445
34

7 (continued) 118 20 00.0 4,186,692.58 33 .52 00.0.

25 00.0

Lambert Programs

The Lambert conformal programs listed here omit certain of the housekeeping
functions. which are present. in the actual routines. However, all of the

essential computational routines and subroutines are provided,

Variable Names

Name . Description

Aa : Semizmajor axis of sclected earth spheroid -
Arg Tangent arg.ient in equation for isometric latitude
Bias Bias in meters for selected California Lambert zone

(0 if not in California Lambert mode) .

o omn . e i ot ealibh o maibnatiln v - prosso—
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Count Number. of iteration passes within secondary vindovw range
Deg Valioe of degrees roturned from Dmstodeg subroutine
D1on Difference betwoon origin and target longitudes

Dionl Angular differonce botween origin and target
meridians on planar conic projection

\ E2 - Eccentricity sguared.
Ee . Eccentricity of selected e¢arth spheroid

Esinphi E®*SIN(U). .

K Lambert constant
L Map convergence
Lx . Lambert x in meters (x bias removed)
Lx1 Scaled Lambert x in input or output units
(includes x bias for California Lambert zones)
‘ Ly Lambert y in meters N
l Lyl . Scaled Lambert.y in.input or output units
N . E-W radius of curvature (general)
Nn . E-¥ radius of curvature along north standard parallel
r Ns ... E=W radius.of curvature along south standard parallel
Olat Origin latitude .in degrees
; R1. Origin-to-target (hypotenuse) direct Lambert distance
Ri Working value .of magnitude of apex—-to—target vector
Ro Magnitude of apex-to-origin vector
Rz2 Magnitude of apex-to-target vector e

Scale Map scale.(for example, 500,000)

U Geodetic latitude
Ucnv . Conversion factor from meters.to selected units
Xi Working value of conformal latitude
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\ 71 Working value of conformal colatitude

r

Zlast Last value of. target latitude in reverse iteration

71at . Target latitude in _dogrees

N
5 Zlon Terget longitude in_degreés —.
¥\‘ Zn Conformal colatitude of north standard parallel
: Zo ... Conformal colatitude of origin point
i Zs Conformal colatitude of south standard parallel
Zz Conformal colatitude of target
720 Conformal .colatitude of target
7z1 . Current trial.input value of geodetic latitude
Z22 Current trial conformal colatitude value

Computational Algorithms

The. essential algorithms. for the Lambert routines. were written for the System
45 computer which is programmable only in BASIC. Therefore, all algorithms are .
given in BASIC,

A. Lambert Initialization Routine: The values of the north and south standard
parallel latitudes, the origin latitude, the origin. longitude, and. the map.
scale and bias factors are required for. the initialization routines... These
values are either entered manuvally (for normal mapping solutions) or.
automatically picked up from stored values (for California Lambert zone
solutions). The progrem then computes all of the non-variable parameters
required by the computational subroutines., These parameters are Nm, Ns,
7Zn, Zs, L, K, and Ro.

i

1. .U=Nlat |
2. GOSUB Necale :
3. Nn=N

4.. GOSUB.Xicalc 4
5. In=Zi . }
6.. U=Slat

7. .GOSUB Nealc ¢
8. Ns=N ¢
9, GOSUB Xicalc !
10. Zs=Zi '

11, U=0lat

12. GOSUB Xicalc ‘
13, Zo=Li 1
14, GOSUB Léalc.




s 15 .
’ 16,
17.
; 18,

GOSUB .Kéale .
Z7i=706

. GOSUB Ricale

Ro~=Ri

B et N et DN

Geodetic to Lambert.Computation: The operator enters the target latitude
(Z1at) and longitude (Zlon). The target’s conformal colatitude (Zz). is.
then ocomputed for use in subroutine Ricalc which returits the magnitude of
the apéx—~to~target vector, The difference in longitude (Dlon) betwecen ¢he
origin longitude (Olon) and the target longitude (Zlon) is obtained in step.
5, and that difference (Dlon) is then multiplied by the map convergence
factor (L) to obtain the difference in longitude (Dlonl) between the apex~
to-origin and apex-~to~target vectors (fig., 2.1).. Step 7 resolves the polar
coordinates of the apex-to-target vector (Ri and Dlonl) into Lambert
Cartesian coordinates (Lx and Ly) in subroutine Lamxy., Lx is then adjusted
by the amount of the California Zone bias (Bias), converted from meters
into the selected output units, and scaled as necessary., For general
Lambert conversions, the.bias term is 0, The Ly coordinate is converted to
output form in. & similar manner except that there. is no y-coordinate bias.
in the California and general Lambert systems.

U=Zlat
GOSUB. Xicalc
Zz2=Zi
. GOSUB. Ricalec
Dlon=(0lon~Zlon)
Dlonl=Dlon*L.
. GOSUB Lamxy
..Lx1=(Lx+Bias)*Ucnv/Scale-
Lyl=Ly*Ucnv/Scale

OV eO~IAhAW & wh R
e o & o o o o & ¢

Lambert to Geodetic Computations: The operator.enters the scaled Lambert x .

and y coordinates (Lxl and Lyl) in the selected units. The.program removes
the x bias (when California Lambert has been se¢lected), adjusts the values
to full scale, and converts the distances from the selected input units to
meters, The adjusted values (Lx and Ly) are.then used to compute the
magnitude (Rz2) of the apex—to-target vector and the. angle (Dlonl) between
the origin and target vectors. Dlonl is then divided by the map's
longitude convergence factor (L) to yield the true longitudinel difference

(Dlon) between the origin and target points,. The actual target longitude ]
(Zlon) is then found by subtracting the longitude .difference (Dlon) from
the origin longitude (Olon). The target iatitude (Zlat) is obtained
through the iterative routine described in the Lambert to Geodetic
Computations section on page 2-5,
1., Lx=Lx1/Ucnv*Scale-Bias £
2. Ly=Lyl/Ue¢nv*Scale g
3, TIF Lx<>0 THEN GOTO 7
4. .Dlon=0
5. Rz2=Ro-Ly
6. GOTO 10 ‘
7. .Dlonl=ATN(Lx/(Ro=Ly))
2-10 !
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8, Rz2=Lx/SIN(Dlonl)

K 9, Dlon@Dlonl/L

X 10. 2Zlén=0lon=Dlon

. 11, Z20=Z21=2%ATN((R2z2/K)**(1/L)

2 12, U=90-Zzl

! 13, GOSUB Xicalc

14, . Zu22<74

; is. IF. ABS(Z22-720) ¢(5E=10 THEN 18 e e e et e e
V‘ 16.. Zlast=Zzl

. 17, Zz1=27.204Z21~Z2z2

} 18, IF-Zlast=Zz1 THEN Count=Count+l

- 19, _IF Count=3 .THEN 18
| . 20, GOTO. 12

- 21, . Zlat=U

D. Subroutine Ncalc: This subroutine computes the E-W radius of. curvature
at latitude U based on the selected spheroid parameters a (Aa) and e?
(E2).. It is & direct implementation of equation (1.6).

1. Sinu=SIN(U)

2. Sin2u=Sinu*Sinu

3, N=Aa/SOR(1-E2#Sin2u)
4., RETURN

E. Subroutine Xicalc: This subroutine. computés values for conformal lati-
tude and conformal colatitude for a point at latitude U on a spheroid whose
semimajor axis Aa and whose eccentricity squared is E2. The conformal 1
latitude (Xi) is obtained at step 3 by solving a combined form of equations
(2.18) and (2.19) for.f. Step 4 yields the conformal colatitude by & R

direct implementation of equation (2.22). "“wm]
1. Esinphi=Ee*SIN*(U) S
2. .Arg=45+U/2 i
3., Xi=2%(ATN(TAN(Arg)*((1-Bsinphi)/(i+Esinphi))**(Ee/2))-45

4, . Zi=90-Xi.

5. RETURN

F.. Subroutine Lcalc: This subroutine computes .convergence by ¢ diroet
implementation of _equation (2.26).

1. L=LGT(Nn)-LGT(Ns)+LGT(COS(Un)~LGT(COS(Us)))/....
(LGT(TAN(Zs/2))-LGT(TAN(Zn/2)))
2.. RETURN

G. Subroutine Ricalc: This. subroutine computes the magnitude of the apex-to-
target point vector by use of equations (2.21) and (2.22).

1. Ri=K*TAN(Zi/2)**L ‘
2.. RETURN. ‘

H. Subroutine Lamxy: This subroutine computes Lambert x=y coordinates from
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the. angular rélationships between the veetors Ro and Ri as shown in figare
2.1, -

1. _Lx=Ri*SIN(Dlonl)
2, Ly=Ro-Ri*C0OS(D1onl)
3. RETURN

.

S~—Conic Wpex point

Sclected.
origin
point—J|

-—Target point

Figure 2.1,

Program Operation.

The Lambert routines are part of the mein program GEOD,
operator is asked to select the units and da tum/spheroid reference applicable
to the computations.to be performed... After. these selections are made, the
master menu selection is displayed, One menu selection is LAMBERT
TRANSFORMATIONS. The operator makes the .appropriate numerical entry and the
main program enters the Lambert routines. The operator is then prompted to
make several simple selections. The prompting messages .and. program options
that appear on th¢ CRT are shown below,

A. Mode selection
SELECT. MODE

0 = GEODETIC TO LAMBERT
1 = LAMBERT TO GEODETIC

2-12
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B.

c.

E.

Output device seclection
SELECT OUTPUT DEVICE
0 = .CRT
1 = THERMAL PRINTER
2 = LINE PRINTER
Parameter selection

SELECT INITIALIZATION PARAMETERS

MANUAL ENTRY
CALIFORNIA LAMBERT.

0
1
2 = CALIFORNIA LAMBERT WITH SPECIFIED ORIGIN. ..

monon

If the operator emters 1 or 2 and continue (CONT), the program proceeds to
step D. If the operator enters CONT, the program proceeds to step E.

California Lambert zomne selection

ENTER CALIF ZONE (1, 2, 3. 4, 5, 6, OR 7)
If 1 was selected at step C, the. program uses the standard origin point for
the selected Califecrnia zone. If 2. was selected at step C, the program
uses. the stored north and south standard parallels for the selected
California zone but requests an operator entry of the desired origin point.

This is primarily intended for survey applications in which the N-S. and E-W
coordinates of a new point are to be_computed .from an existing survey

markeér.
SELECT ORIGIN

ENTER ORIGIN LATITUDE (D.MS)
ENTER ORIGIN LONGITUDE_(D.MS)

Manual input of Lambert parameters: If California Lambert was not selected
at step C, the .operator must input the Lambert parameters.needed for the.
transformation, If California Lambert was selected, step B is bypassed.
1. Selection of north standard parallel

ENTER. LAT_OF N STD. PARALLEL. IN D.MS -
2. Selection of south standard parallel

ENTER LAT OF § STD PARALLEL IN D.MS

3, Selection of origin latitude _

ENTER LAT OF ORIGIN IN D.MS

=13

re;




4, Selection of origin longitude -

% ENTER LON OF ORIGIN.IN D.MS

;
t'_ F. Selection or reéjection of Lambert parameter printout

. TO PRINT LAMB PARAM, 1 AND CONT
w.
e If 1 and CONT are entered, the following parameters will be printed out on

the selectéed output device.

, 1. . Latitude of north standard parallel in dms, deg, and radian values
x 2. Latitude of south standard parallel in dms, deg, and radian values
i 3, Origin latitude in dms, deg, and radian values.
4, Origin longitude. in dms, deg, and radian values
} 5. .Nn (E-W radius.of curvature on north standard parallel)
6. .Ns (E-W radius of curvature on south standard parallel)
7. Zn_(Conformal colatitude of north standard parallel)
8. Zs. (Conformal colatitude of south standard parallel)
9. Zo (Conformal colatitude of origin)
10. Ro (Magnitude of apex to origin vector)
11. K (factor)
12, L (map convergence)

G. Geodetic to Lambert computations (if menu selection was for.Geodetic to
Lambert mode): .

1, Operator entries
ENTER IDENTIFICATION.OF POINT:

ENTER LATITUDE .IN D.MS (EG:.35 42 33.5643 = 35,42335643)

ENTER LONGITUDE IN D.MS (EG: 117 23 45,3214 = 117.23453214)
2.,  Program outputs (on selected output device) .
NAME OF POINT —

GEODETIC LATITUDE = (Value given in dms, deg, and radians)
GEODETIC LONGITUDE = (Value given in dms, deg, and radians)

LAMBERT X = (Value given .in selected units)
LAMBERT Y = (Value. given in selected.units)
LAMBERT R = (x-y triangle hypotenuse in selected. units)

for entry of the next geodetic point.
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3. Program pause: Upon depressing CONT, the program returans to step G-1
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: H, _Lambert to geodetic computations (if menu selection was for Lambert to
X geodetic mode);

K 1, Operator-entries:

ENTER IDENTIFICATION OF. POINT

ENTER LAMBERT X VALUE IN SELECTED UNITS AND SCALE
ENTER LAMBERT Y VALUE IN.SELECTED UNITS AND SCALE

2. Program outputs (on selected output device):

NAME OF POINT -

LAMBERT X.VALUE
LAMBERT. Y VALUE .
LAMBERT R VALUE

(Value given in selected units and scale)..
(Value given in . selected units and scale)
(Value given in selected units and scale).

nnnw

GEODETIC.LATITUDE = (Value given in dms, deg, and radians)
GEODETIC LONGITUDE = (Value given in dms, deg, and radians)

3. Program pause: Upon depressing CONT, the program returns to step H-1
for entry of the next Lambert point.

Program Validation

The Lambert routines are validated by using U.S.. Coast and Geodetic Survey i
horizontal control data sheets for established survey points throughout ]
Southern California. During a validation exercise, any points can be selected
and .used in either the forward or reverse programs, For the comparison given
in table 2.2, several first and second order survey points were selected at
random, The first line of each entry gives the geodetic latitude .and longitude .
of the point along with published USCGS Lambert coordinates.. The second line
provides the Lambert coordinates.computed using the GMD routines, In table
2.3, the published USCGS Lambert coordinates for the same points are shown on
the first. line of each entry. The second line shows the geodetic coordinates
calculated by the GMD routines using the USCGS Lambert values. When GMD
Lambert values are input to the program, the calculated coordinate values are
identical to the original geodeti¢ coordinate values. The differences between.. ... .
USCGS.and GMD results are equivalent to an earth spheroid distance of only f
l about 0.01 to 0.02 foot and therefore are not significant, even for the most_..
precise survey work, However, since- the GMD Lambert routines are based on
closed-form solutions of the transformation equations, any discrepancies shown
must be attributed to roundoff errors in the GMD ¢computations, to approximation ;
or roundoff errors which may be present in the USCGS routines, or to both,

e
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TABLE 2,1,

GEODETTC_TO LAMBERT VALIDATIONS

Statidﬁ

Source

isngitudé

Lamﬁért X

Latitude vLa&Serf y
California Zone §.
Soledad USCGS 34 58 57.1271 118 11 16.5426 1,943,705.88. 539,573,173
GM _ . 1,943,705,.88 539,573.74
Willow USCGS 34 53 00,7287 .118 16 31,8072 1,917,374.47 503;604.72»
Springs GMD .. 1,917,374.417 503,604.73 .
USCGS . USCGS. 34 53 00,3234 118 16 31.8553 1,917,370.30 - 503,563.77
3293 GMD 1,917,370.30 503,563,717
Mint USCGS 34 34 00.7650 118 16 41,0384, 1,916,286 .65 388,368.63~
GMD - - 1,916,286.65 388,368.63
Oban USCGS 34 45.14,.6870 118 08 43,2816 1,956,338.26 . 456,410.30
GMD . 1,956,338.26 456 ,410,31
Lope USCGS 34 48 29.9146 118 21 33.8124 1,892,117.22 . 476,307.27
GMD 1,892,117.22 476,307.28
Bajada USCGS. 34 54 00,2985 118 21 28.3580 1,892,690.93 509,704.59
GMD 1,892,690.94 509,704.60
Calif@rnia Zone 7
Sur USCGS. 34 41 20.8412 118 19 24,5217 4,189,655.48 4,363.197.08
GMD 4,189,655.48 4,363,197.07
Surge USCGS 34 35 54,6055 118 27 08.8435 4,150,840.11 4,330,235.81
GMD 4,150,840,10. .4,330,235.79
Pelona USCGS 34 33 39,2730 118 21 18.4042 4,180.134.86 4.316,533.90‘
GMD 4,180,134 ,.86...4,316,533 .88
Mint USCGS 34 34 00,7650 118 16 41,0384 4.203.332.54 4,318,710.47
GMD 4,203,332.54 4,318,710.45 .
2-16
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: TABLE 2,2, LAMDBERT TO GEODETIC VALIDATIONS —
Q Station Source Lambert x Lambert y Latitude: Longitude
:{ California Zone §
3 .
L Soledad USCGS 1,943,705,.88 §39,573,73 34 58 57,1271 118.11 16.5426;
5 GMD 34 56 §7.1270 118 11 .16.5426
»
B Willow USCGS .1,917,374.47 503,604,72 34 53 00,7287 118 16»31.9072_
3 Springs GMD 34 53 00,7286 118 16 31.9072.
:5 USCGS USCGsS 1,917,370,30 503,563,777 34 53 00.3234. 118 16 31.8559
i 3293 GMD. 34 52 00,3234 118 16 31.8559
Mint .USCGS = 1,916,286 .65 338,368,63 34.34.00,7650. 118 16 41,0384
GMD . 34 34 00,7650 118.16 41,0384
Oban USCGS .1,956,338.26 456 ,410,30 34 45 14,6870. 118 08.43.,2816 .
GMD 34 45 14.6869. 118.08 43,2816 .
Y.ope USCGS 1,892,117.22 476,307.27 34 48 29.9146. 118 21 33.8124.
GMD 34 48 29.9145 118 21 33.8124
Bajada USCGS 1,892,690.93 509,704.59. 34.54.00,2985" 118 21 .28,3580
GMD 34 54 00.2984 118 21 28,3581
California Zone 7
Sur USCGS .. 4,189,655.48 4,363,197.08 34 .41.20.8412 . 118 19 24,5217
GMD . 34 41 20.8412 118 19 24.5217
Surge USCGS 4,150,840.11 4,330,235.81 34 35 54,6055 118 27 08.8435
GMD . 34 35 54,6057 118.27 08.8434 ...
Pelona USCGS 4,180,134,86 .4,316,533.90 34.33 39,2730 118 21 18.4042
GMD 34 33 39,2732__118 21 18,4042 .
Mint. USCGS 4,203,332.54 4,318,710.47 34 34.00.7650 118 16 41.,0384.
GMD .. 34 34 00,7652 .118 16 41,0384
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CHAPTER 3

TRANSVERSE MERCATOR TRANSFORMATION EQUATIONS

General Theory

The derivation of the transverse Mercator -transformation equations is based. on
complex variasble theory. If there exists an analytic function of A and. t
such that

x + iy = f.(?» +: i‘C), (301)

then the transverse Mercator transformation equations can be derived by applying
the following initial conditions.

1. The transformation shall be orthomorphic (conformal)..
2. The scale shall be true along the central meridian.

It. has been shown that the equations

T = §~sec pdy and A=A (3.2)

© —F

conformally map a.spheroid onto a plane, Thus, the use of ‘these relations in
the transformation equations will insure the orthomorphic requirement.

To meet the .condition that the scale.be .true along the central meridian,_ where
x =0 and A = 0, equation (3,3) must be satisfied,

iy = £(it) = i8 (3.3)

As previously noted, SM is the true length of the meridiomal arc from
latitude 0 to latitude pn. : R

It has also been shown that e
p
s, = j R.dy.. (3.4)
']

Differentiation of the expression for t given in equations (3.,2) yields
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dtv = % sec p dp (3.5).
or
N ¢os-p dv = R.dp, . (3.6)

which when substituted for R du in equation (3.4) yields

f(z).= S =-1 N cos podr, (3.7)

i

© T

Forward Calculations

If x + iy = f£(A + it) is expanded about. a point on the central meridian (it).
using Taylor's theorem, the following series is obtained..

3
£+ iy = £(0 + i7) = £04T) + AER(iT) + AT £2(in) ¢ A pun +

AL AS . AS : AT

41 f‘(irlm¢«5! 25 (ie) + 61 fo (it) + 1 £7(i¢) +

A AS

Y f8(it) + o1 f’&}:) + e v .. (3.8)

(Note that, .as used in equation (3.8) and others to follow, the terms f2(it),
£3(it), ... signify the.second, third, ... derivatives of f(it).) - 3

From equations (3.3) and (3.6), f(i%) = isu = if(x). Successive differentia-
tion of this equation and substitution of the results into equation (3.8) yields

LZ‘ 4

= - - A 5 AZ
x + iy = if(x) + M2(7) ~57 if2(1) - £2(x) + if4(z). + Gy £i(x) +

%{ 14 () - %% £1(x) +m%% TIYC IR (3.9)

The. successive differentiation of f(t) is a lengthy process in which it is
convenient to establish the following relationships:

r. -
N' = (N - R)tan y, R’ =3 % (N- Ritanp, HiE -‘21E-§‘Bl'tan ",

-~ TN

.‘lﬂ=-u ; 2 - '
at SR oS Mo (N cos p) -R sin p, eand

(N sin p)* = sec p(N - R sin3p) = (R cos p) /(1 - e3). . (3.10)
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From equation (3,4)
f2(z) = N cos . (3.11)
Successive differentiation yields
£3(r) = = L sin 29, (3.12)
e« N N_ N
f3(q) = = 4 [ 3(R _1) cos p + (R + 1) cos 3p],' (3.13)

and so forth, Because of the very cumbersome nature of the.higher order
derivatives, additional .terms are not given here. However, it can be shown that..
the function of r given.by equation (3.2) is analytic (that is, all higher

order derivatives exist in the selected region, and the function can Ye

represented by a Taylor series). Complete calculations of all derivatives
through the eighth are provided in reference 1.

Substituting t = tan y and n2 = [e3/(1 - €?)) (cos?u), separating the

real and imaginary parts of ‘equation (3.9), aad substituting all derivatives
through the-eighth yields

3 3 E 1
x = NA cos p + H-’*—9%-3-—2(1 -t +q2) + 5LE§%§—E(5 --18t3 + t4 + 1473 -

58t2n2 + 1304 - 64t3n4 + dns —-24t2q6) +.

. 4= £6 4 3312
Nﬁggfg—g - 8655t2n4 + 6080t4r ¢ + 769n6 ~ 10964t2n¢ + 9480t4n¢- + 412n°

6760t3n?® + 6912t4n® + 88n20 - 1632t2q30 + 1920t4q30

and (3.14)
2 4 . .
y = S‘1 + NA2 sin g cos p + %ﬁr sin u cos?u(5S = t2 + 92 + 4n¢) +
Na ¢

720 Sin-t cosSu(61 - 58tL + t4 + 27002 - 330t3n2 + 4454 - 680tins +

324n¢ - 600 t3ne + 88n®-- 192t2n8) +

1385 - 31112+ 543t4 - 6. + 10899n3 - 32802t3n3 T

| + 921943 + 34419n4 - 129087t2né ~+ 49644t4n -

4?250 sin.p cosly |+ 5638516 - 252084t3q¢ + 121800t4ns + 508567 |

- 263088t3n® + 151872t4ns + 24048710 ~ 14092830 ¥

L+ 94080t4n20 -+ 4672013 - 30528t3n13 + 23040t4n1 |, w
(3.15)

Thus, equations (3.2) have been shown to.map spheroid points,

: defined in terms
of longitude and isometric latitude, onto a rectangular coordi

nate (x, y) plane,
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The. function is analytic at all points, and equations (3.14) and (3,15) have
been derived using initial conditions set for the transverse Mercator
projection,. Furthermore, it was shown eéarlier that if an analytic function,
employing equations (3.2), can be found to satisfy a selocted set of initial
conditions, the resulting mapping must also. be. orthomorphic., Hence, the general
form of the. transverse Mercator projection provides true measurements on the

central meridian while also preserving angular measurements throughout the
mapped areas,

Fquations (3.14). and (3.15) are used in the geodetic.program to compute
transverse Mercator x and y values, Several simplified forms of equations
(3.14) and (3.15). are given in references 1 to.3., Since time was not a critical
factor.in the baseline.program, it was decided to use equations (3.14) and
(3.15) without simplification so that the highest levels of accuracy could. be
maintained in the results. At the present time, the baseline programs are
designed to operate on a. 48-bit (12-decimal~digit) system,. The programs may be
converted at some future date to operate on a 64-bit double precision system,
and in such case the additional terms will affect the results.,

Inverse Calculations

It is now desirable: to develop formulas for © and A in terms of the
rectangular coordinates x and y. The inverse.function may be written as

A+ it = F(x + iy). (3.16)

Again applying the initial condition that A = 0 when x = 0, equation (3.16)
becomes

F(iy) = (iv). (3.17)

Using a Taylor series to expand F(x + iy) about a.point iy yields

A+ ic = F(ly) + sFi(iy) + E= Fa(iy) + 5> B3 (dy) + 5+ Fe(iy) + 2 Fs(iy) +
MR ] A TR A T yhT sy T

6 ? ]

%{F‘(iy).*-’-.;TF"(.iy).+§TF'(iy)..+ cee o (3.18)

(Note that, as. used in equation (3.18) and others to follow, the terms F2(iy),
F3(iy), ... signify the second, third, .., derivatives..of F(iy).)

Since for the initial conditions set forth F(iy) = it, it can be shown that
F3(iy) = - ',

Fi(iy) = <*, F3(iy)= -iz",

Fé(iy) = = ¢"",  Fi(iy)= ic"", (3.19)

and so forth, Equating the real and imaginary parts of equation (3.,18) yields

3=4
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< ﬁt; - ‘ ’U; +4l 'c’.- 6' c; : 4 8! 1; 200 ¢ . (3—;21)

s

V. The. subscript 1 in equations (3.20) and (3.21) refers to the latitude of the

! footpoint, The footpoint is the horizontal projectien of the target point onto

". the central meridian, More simply stated, it is the point which would be
obtained.if the transverse Mercator X coordinate.were zero but the y coordinate.

remained . that of the target point. The.relation of the footpoiat to the. target

point is shown in figure 3.1,

/— Central
meridian. —
oo o o o mm we wm m eelem e em om e W e )
Foo tpoint—/ - —.-T’ - _ﬂ
pom—— " - arget
\—Target
Origin latitude Yy
oint
p "\ . i

| T

Figure 3.1.

Again, the various derivatives.of T are provided from the equation

u u
T =‘j%sec.p dp =SL‘= de}n._ (3.22) o
[ ¢ "

]

3=5
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from which
dt 1. N ¢0s todp dp 1
[ 1LY ” : 8 o
o =88 " Wosamt U " Nieosww a8 * " ds T (3.23) —
Continuing the differentiation yields -
o = N cos?u -~ 2sin pul(N cos_u)' du
m s Nicosip s
N (os3 2
R c08’H +'2s{n i
= N¥coa?p
= N,cis " (1.4 2t2 +.n?), (3.24)

where t = tan_pu, n = & cos3p, and & = e?/(1-¢2). ..

Again, the higher oxder derivatives become. very cumbcrsome and are omitted from
this document for the sake of. brevity. For those who may wish to inquire
further, complete calculations of all derivatives through the eighth order.are

provided in reference 1.

At this point it should be noted that since the value of longitude obtained from
equation (3,20) is actually the. difference in longitude between the .target
coordinate and the. central meridian, in the. equations to. follow the term A\

will be substituted for A to eliminate confusion. Substitution of the-higher
order derivatives into equations (3.20) and (3.21) now yields

1r=7
; [Na] (1 + 2t2 + n2)
1 ([5.+ 6n3 + 28t3 - 3n§ + 8tin}
+ _____[_:s_]
120 LN, |+ 24t4 - 4n$ + 4t2ng + 24ting
"61 .+ 662t2 + 1320t4 +-720t§ + 107n}
a1 [JL], + 43m + 440t2n2 + 97n§ - 234tind
5040 LN_J |+ 336t4nz + 188n3 - 772ting - 192t{n}
+ 88n30 - 2392tin} +-408t4ng
| |+ 1536ting --1632t4n}0 + 1920t4n}

[x_
N1

AN = sec M, 1 (3.25)
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and
| HRTd T

. [ 61+ 46ni + 180t3 - 3ng ]
~ 335 []7 |+ eseamt + 12001 + 200mg _
*-36ting - 96tin§ + 88n¢ - 192ting.

At = t, 506 4, [ 1385 + 72662 + 1731n3 + 10920t4 ]
= + 4416tin2 - 573ng + 5040t$ - 1830tind

L o T2S88tINY - 2927mg ¢ s0s2ting

+ 70355 [Tl — 1536t4ns - ssosng + 27456¢2ns

+ T44ting - 11472030 + 5395282030

- 7872t4ny - 4672013 + 30528tin22

_ | - 24960t4n30 - 23040t4n1 |

(3.26)

A difficulty exists with equation (3.2) in that isometric latitude is obtained

instead of geodetic latitude.. Thus, it is necessary to expand Ap with respect
to At as follows:

du, At? @3, AtY ddy,  Até dey,
AT S AT T T TR, R A, Y H an

+ LI BN L D (3.27)

Starting with the relation

R dp; = N cos u,dz,,

the derivatives of p, with respect to T, ¢an be expressed as
du, N,
s = 3
dv, TR, °°8 Ka= (1 +ni) cos u,, (3.29)
d*u, N, N,
7;;? = i: ?;gossz 2 - 3§:- = -(14+.2:1§;_+ 3n§)t1cos‘p‘, (3.30)

and s6 forth, A complete derivation of the higher_derivatives of p with respect
tox is provided in reference 1,

Substituting the higher derivatives of p with .respect to t and the relation
for Ax given in equation (3.26) into equation (3.27), the various coefficient

terms can be eventually reduced to yield the following equation for p based on x
and the footpoint latitude:
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1RO < ek mmn.u-mxtw
- b d e it S S .
. N Rkttt Rttt

ty 2t JE
“ i ng)[ﬁ%] + 5;(1-f-n’)[§%] (5 4 3t2 + n3 - 4nd = O3 td)

g | g |
4 ¢, | 61 + 90t + 46n + 45t3 - 252t3n2 - 304 +-100n}
4 it ap[E]| -~ e6egng - g0t gang + 225tini + s4ting

1 - 102tmg

ty x 18
v 4 & §
S TITIE “i?[m,] (1385.+ 3633t2 + 4095t4 + 1575t%). (3.31)

e footpoint lies on the central meridian where the scale

e meridional distance is. equal to the ¥y coordinate
e.footpoint can be easily determined from .

Now, recalling that th
is true (that is, wher
distance), the meridional arc of th

B B
3/2
y, & Sp = f R,dp = a(l - e’)j 1/(1 - e?sin?py) . (3.32)
* ° 0.
In expanded form,
" 3 15 105
= & = - ( o2 s=cd 4 2XL . 6g5in6
Y, SP; a(l — &2) I (1 + % sin?p, + g8 sindp, + Sgelsintu,
[}
+ giie‘sin‘.p_1 + %%%?eésin'plzil)dp. (3.33)

384
In the. baseline program, 3 method sas devised whereby a starting value of p is
obtained by the relation

n=y/R, _— (3.34)
° {

north-south radius of curvature at the map's origin point.

to obtain a trial value of y..
1 value of y is then used in

where Ro is the

This value of p is then use
The difference between the
a corrcctor equation to ob

d in equation (3.33)
trial value and the actua
tain an.improved value for M.

The corrector equation used in the baseline program is
S +.y —~S] y
= ,_9_.__.————-—-11 ——
Hpe1 “Pa * [ I Rn ’ (3.35)
¢
dional arc from the equator to the origin .
[}

where SO is the.length of the meri

latixude,,sn is the. léngth of .the meridional arc computed using the nth .

south radius.of curvature computed. using the

value of p,“Rn is the north-
y coordinate of the target

ath value of p, and y is the transverse Mercator
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point. Since the footpoint is the target point's projection on the eentral
meridian .(the y axis), it is obvious that the computed meridional arc must equal
the distance of the origin point’s meridional arc plus the value of the y
coordinate (fig., 3.2). Thus, when a value is obtained that causes the bracketed
term in equation (3,35) to go to zero, the correct latitude for the footpoint
has been obtained, .

Target latitude

Origin latitude

Equator

Figure 3.2,

Successive iterations and corrections are performed until the trial value of y
equals the true value of y to within the precision limits of the 12-digit
computational system. This generally takes three to four iterations.

Integration of equation (3.33) is.accomplished by a recursive technique using
the relation

n-1
I sin®y dp = - sin iﬁ €05 4, & " 1 j sin® zp‘du. . (3.36)

Thus, for the inverse solution, the value of y is used to ohtain the footpoint
latitude. When the footpoint .latitude is obtained, the program thén computes
the various subscripted -terms needed for equations (3.25) and (3.31) and solves
those equations for the true values of u and A, Again it is necessary to note
that simplified forms of equations (3.25) and (3.31) are presented in reference
1. However, to retain the greatest possible accuracy and allow for future
upgrades in the. baseline computational equipment to 64-bit precision, it was
decided that the complete form of. equations (3.25) and (3.31) would be used in
the baseline._program,

Nevada Mercator

The. transverse Merfcator plane coordinate system for the State of Nevada consists
0f three zones.. Transformations for points in each of the .three zones are
accomplished in the $ame manner as described €£or a general transverse Mercator

3-9

e

e maa




pProjection except .that a bias factor of 500,000 I.S., feet is added to the x
, coordinate in all zones, and the grid length is arbitrarily reduced by a factor
' of 1/10,000 .to reduce overall scale error. - -
. The reduced map séale. compensates for magnification values at points off the .

ﬁ- map's -¢entral meridian, . In a general transverse Mercator-projection, the map

g scale is tfue along the contral meridian but magnified for all points of f the

X certral meridian (fig. 3.3(a)). With grid lengths along the¢ central meridian

i reduced by a factor of.1/10,000, the grid lengths are exact at about 56 miles
from the central meridian and are 1/10,000 too large at about 79 miles from the

, central meridian (fig. 3.3(b)). Thus, for an east-west band of. about 158 miles,
rl the scale never differs.from 1. by more than one part in 10,000, Obviously, with-

out the. scale reduction, field measurements would require greater adjustments at
some. points,

~Scale magnified . ~Spheroid surface
Séale mngniﬁie{7~~ //{:"_______~_§\<<{~j/—Mapping

2 s - surface ...
Scale. Spheroid - Scale Scale
exact: surface exact \_Scal exact
-
/—Central. Central. reduced
meridian meridian~w
Genéral transvérse Mercator . Nevada transverse Mercator
(a) (bv)

Figure 3.3, -

The lines of separation betweén the.Nevada .zones extend approximately north and
south, following county boundariés. The zones are designated east, central, and
west, with maximum longitudinal coverage for any one zoné no greater than about

3 degrees. Table 3,1 lists the basic transverse Mercator parameters used for
each of the three zones.. 1

TABLE 3.1. NEVADA SURVEY ZONES

Zone Olat Olon X bias Scale ratio |
i
East 34 45 00.0 115 35 00.0 500,000 1:10,000
c
Central 34 45 00.0 116 40 00.0 500,000 _ 1:10,000 7
West. 34 45.00.0 . 118 35 00,0 .. 500,000 1:10,000
3-10




Transverse Mercator Program

A This section presents the essential computational routines. used for both the
) forward and reverse transverse Mercator transformations,

Variable Names .
Name ; Description

A - Greek eta. in Mercator equations where
n = [e3/(1 - &2)](cos2p)

A2, M, ... A2, A¢, ... .

Aa Semimajor axis of selected earth spheroid .

Arc Length of meridional. arc

Arcsave Length of meridional arc from.latitude 0 to the

origin point

Cor . Scale factor correction (0.9999 if Nevada)
Corl Bias factor .in meters -
Cos , Cosiné¢ of target latitude (cos u)

Cos2, Cos4, ... Cos?p, cos*yu, ... .

D . Greek.delta .in Mercator é¢quations where.
& = g2/(1 - g2)
Den Denominator in meridional arc integration term
E2, E4, ... g3, 84, ... .
Ee Eccentricity of selected earth spheroid, ¢ . |
Exp Exponent in meridional arc integration term ;
Flgl Program flag indicating first pass through ‘
meridional arc-computation__ §
G Subscript of ith meridional arc integration term
Imult (2#1-1)/(2*1) §
Integl Accumulated value of integral 1
Integ2 Final value of integral on exit from subroutine 1
3-11___
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L2, 14, ...
Lat

LatO.

Lon

Lon0.

Mult _..

Nuarc

Num.

Pcor

Psave

R

Radius

Sin

Sin2, Sin4, ...
T..

Teml.’ 2’ 3p .o

Terma, b, ¢, ..

Ucnv

X

xz‘....xAn e s

Part of ith term in numerical integration

Difference between target and origin longitude,
in radians

L, L4, oo -

Target latitude in degrees

Origin latitude in degrees

Target longitude in degrees .

Origin longitude in. degrees

Multiplier in meridional arc integration term

East-west. radius of curvature

Intermediate value of _meridional arc

Numerator in meridional arc integration term

Target latitude in radians

Iterative correéction to P in footpoint latitude
calculations

Saved value of. origin latitude in radians

North-south radius of curvature

Meridional radius

Sine_of target latitude (sin p)

Sin2%p, sin4p, ...

Tangent of target latitude (tan p)

Parts of infinite series. terms in the forward
calculations

Parts of infinite series.terms in the reverse
calculations .

Unit conversion factor
Transverse Mercator x in meters and without bias

xz' x‘, s s
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Xa . Transverse Mercator X in selected units L

Y . Transverse Mercator y in meters

YO Length of meridional arc fxom latitude 0 to the
origin point.

Y2, Y4, .o Y2, Y4, oo

Ya Transverse Mercator ¥ in selected units -

Computational Algorithms

Transverse .mercator initialization:.’ln the manual mode, the operator enters.
the origin latitude and 1ongitnde~(Lat0 and Lon0). In the Nevada mode., the .
program automatically uses stored values of origin jatitude and longitude....
and proceeds with the following,initialization routine.. In. this.routine,
the radian (RAD). mode is set and the scaie factor (Cor). and bias factor.
(Corl) terms are set. Note that if & general transverse Mercator solution
is to. be. obtained, Cor is set to 1. If a Nevada transverse Mercator
solution is desired, Cor is set to 0.9999 to provide. the 1/10,000 scalc
reduction shown in figure 3.3. Corl is set to. 0. for general‘transversa
Mercator solutions and to 500,000 for Nevada transverse,Mercator‘solutions.
This adds an X bias. of 500,000 I.S. feet. (table 3.1) when Nevada survey
solutions are desired. Since. all computatiOns,in the baseline program are
carried out in meters, Corl is multiplied by a factor of 1200/ 3937 to
convert the bias term to meters. In step 7 the origin latitude (Lat0) is. .
converted to radian measure (P) for use in the meridiomal arc calculation .
performed by subroutine Arc. Subroutine Arc implements the recursive .
equation (3.36) to compute. the meridional arc length from the equator. to the
latitude Po Since. the origin lies on the. central meridian, the origin's X
coordinr+e (X0) and.the.1ongitude,difference.(L) are both set to 0.
Finally, recalling that the scale is. true along the central meridian of a
transverse . mercator projection, the length of.the.meridional arc from the
equator to the origin must be exactly equal to. the Mercator ¥ coordinate
(Y0) measured along the central meridian from the equator to the origin

point (step 11).

1. RAD
2, Cor=l
3, Corl=0

4. IF Nev=0 THEN 7

5, Cor=,9999

6. . C0r1=500000‘1200ﬁ3937
7. P?LatO‘Z‘PI/360

8. L1=0
9., GOSUB Arc...
10, XO0=0
11. YO=Arc
3-13
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L B. Geodetic to transverse mercator routine: The operator emters the target.
\ latitude and longitude (Lat and Lon). Again, the radian mode.is set and
;- target latitude and longitude are converted to radian measure (steps. 3 and .

‘ 4). Next, subroutine Param is called to compute the various trigonometric
and power terms required by equations (3.14) and. (3,15, Subroutine Xycalc
then implements equations (3.14) and (3.15) to yield values for the target's
tronsverse Mercator X and Y coordinates. Since the ¥ coordinate is.computed
i, from the équator, the equator-to-origin distance must. be subtracted from the
- equator-to-target distance (stéep 8) to obtain the value (Y) of the origin-to=
} target Y coordinate. Finally, the scale and bias corrections are applied
' ' (if a Nevada Mercator solution is to be obtained), and the conversion factor -
x (Ucnv) is applied to both coordinates to convert them to the selected output
units of length,.

? 1, L=Lon0O-Lon
2, . RAD
3. P=Lat*2%PI/360
) 4., L=L*2*PI/360
5. .GOSUB Param
‘ 6. GOSUB Arc
7. GOSUB Xycalc
8.. Y=Y-Y0

9, Xi1=(X*Cor+Corl)®*Ucnv
) 10, . Y1=(Y*Cor)*Ucnv
11, GOTO Gtmprint .

C. Transverse Mercator to geodetic routine: The operator inputs scaled
transverse Mercator coordinates in sclected units (X1, Y1). These units are
converted to meters by application of the conversionm factor (Uenv). In the
same steps, the scale and bias corrections (Cor and Corl) are also applied
when Nevada survey solutions are fo be obtained. Otherwise, Cor is set to .l
and Corl is set to 0. Flag 1 (Flgl) is also set to 1 to signal the.first

y pass through the recursive solution so that an approximate starting value of

the. footpoint. latitude will be computed in step 10. The origin’s latitude -

and Y coordinate are saved (Psave and Arcsave) so that the same transfer

variables (P and Arc) can be used for the target coordinates. The N-S.

radius of curvature of the. footpoint is first approximated using the N-8

radius of curvature (R) of the origin point. The computed value of R and.

the target's Y coordinate are used in step 10, which implements equation. i

(3.34)., After the first approximation of. latitude is obtained, flag 1

(F1gl) is reset to 0 so. that step 10 will be bypassed on subsequent corrector

passes,. Subroutine Arc is then called and returns a computed meridional arc. i

length for the first epproximation.of footpoint latitude derived in step 10,
Step 11 implements equation (3.35). In this step, the returned equator-to- r
target arc length is compared with the sum of the target’s true. Y coordinate.. .
(measured from the origin point) and the equator-to-origin distance. Since :
the. footpoint lies on the central meridian where the scale is true, it. is

apparent that when a correct value for. p is o6btained, the equator-to-origin
meridional distanée plus the origin-to-footpoint meridional distance must )
equal the equator-to-footpoint meridional distance. So long as this is not..

true, step 11 (which implements equation (3.35)) will generate a correction

(Pcor) to be ipplied to the current value of p (P). After the correction
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factor is.applied, the program returns to step 6 to. recompute R based on the
sorrected vaiue of P, . The new value of. P is then used by -subroutine Arc,.
which computes a more accurate value of the meridional arc distance to the
footpoint., Again, this value is used in step 11 to generate @& second
dorrection for p (P).. This process is repeated until the numerator within
the bracketed term in equa tion. (3,35) is essentially equal to O, When this
occurs, P will be at the value of the correct footpoint latitude. Knowing
the correct footpoint _latitude, the. various .trigonometric and power terms
required by equations (3,25) and (3.26) can be computed by subroutine Param,
Subroutine Gealc is then called to implement equations (3.25) and (3.31).

1. X=(X1/Ucnv-Corl)/Cor

2. ..Y=Y1/(Ucnv*Cor)

3, Flgl=l

4, Psave=P

5.. Arcsave=Y0

6. Sin=SIN(P)

7. .8in2=Sin®*Sin

8.. R=Aa*(1~E2)/SQR(1-E2*Sin2)**3
9, _IF Flgl=0 THEN 12

10, P=Y/R+Psave

11, Flpl=0

12. GOSUB Arc.

13. IF ABS(Ar¢save+Y-Arc)<.00002 THEN 17
14. Peor=(Arcsavé+Y-Arc)/Y*(Y/R)
15. . P=P+Pcor

16. GOTO 6

17. GOSUB.Param.

18. GOSUB Gealc

19, GOTO Mtgprint

Subroutine Arc: This subroutine computes the length of a meridional arc.
from latitude O to latitude p. Arc lengths are computed by use of the
Taylor expansion given in ¢quation (3.33) with the integrations being
performed using the recursive integration formula of .equation (3.36). The
recursive calculations performed in the loop between step 6 and step 18 add
one additionmal .integration term of equation (3.33) on each pass. Since the
Taylor series is comvergent, each succeeding term in equation (3.33) is

smaller than the préceeding term. Thus, when the currently computed term is..

zero, the overall result is accurate to the precision limit of the system.
As shown in step 17 below, the baseline program makes as many passes as
necéssary to reach the precision limit of the computer.

Tn step 1, the term a(l.- g3) is computéd. Next, the first integral term,
j dp, is évaluated from 0 to p, simply yielding p (P). which is then multi-

plied by a(l - €2) at step 2 to yield the total ¢ontribution to the arc
length arising from the first term of .the Taylor series, Num and Den

(step 3) are used to form the aumeric fractions shown as multipliers in
cach succeeding term in the. Taylor expansion. For I = 1 (step 5), the num-
erator (Num) is computed to be 3 and the denominator (Den) is. computed to.
be 2, _the proper numeric values for the multiplier of the second integral
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term. The numeric values are combined with the. proper & .power term. in. .
atep 8 which, for I = 1, yiclds the second=term multiplier.,%e?, denoted

| Mult. Next, the integral of sin%u dp is obtained through the use of the
recursive relations provided in equation (3.36). In this case, the power
(n) equals 2. Imult is used to compute the numeric multiplier of the
integral to the right of the equal sign in equation (3.36),. which for

: the n = 2 case equals 1/2. Exp is the exponent. (n --1) of the sine term
immediately after the equal sign. In this case, when n equals 2, the
exponent of the sine is equal to 1. Integ2 is the integral in the right-
hand part of equation (3.36), Recall that on the first pass, Integ

was set equal to P, In solving for the second term of equation (3.33),
where n.takes on the value of .2, the sine exponent is n = 2, reducing

the .integral I sinnﬁgp dp to nothing more than f dp, which is identical

to the first integral in the equation (3,33), which was stored as Integ2.
in step 4. Thus, for the case where n = 2, step 11 yields the value of ..
the right-hand..integral term of equation (3.33), and the complete value

of equation (3.33) is obtained in step 12, The contribution to the. total
arc. length from .the second term is obtained in step 13 by multiplying |
the solution of the integral of sin2p just obtained by Mult (3e%/2). and H
a(l - e2). The total arc length (Arc) is then obtained by adding the i
value from the first term (Arc) to the contribution from the second term g
(Nuarc). Finally, at step 15, the variable Integ2 is set equal to the M

-

P - o

value just..computed foruj sin?p dp, I is.indexed by 1, and the value of

Nuarc is tested.. If Nuarc is found to be zero, the precision limit F
of the system has been .reached and the program returns to the calling
point. Otherwise, the program remains in the Arc loop and solves for i
the next term in equation (3.33). It is important to note that, in each

succeeding pass, Integ2 is precisely the wvalue of the integral term on the
right side in equation (3.36)., meaning that only the first term and simple
numeric multipliers must be .computed., Thus, when I = 2, step 8 yields . '

a value. for Mult of,%fe!,.step 12. yields.a value fornj sin4p dp, and step 14

updates. the value of the meridional arc (Are) to include the contributions..
from the first three terms of the Taylor series. The subroutine continues
to compute additional terms until the value of Nuarc becomes 0, at which i i
time the program_returns to the calling point. !
{

1, Radius=Aa*(1-E2) ‘
2. Arc=P*Radius ﬁ
3. _Num=Den=1 . 5
4,. Integ2=P 4
5. I=1
6. Num=Num*(I%2+1) !
7.. Den=Den®(1%2) !
8. Mult=Num/Den®E2%*]

9, Exp=2%I-1

10, .Imult=(2%1-1)/(2*1)

11, Iterm=Imult*Integ2

12. Integlé*SIN(P)“Exp‘COS(P)/(2‘1))+Iterm
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13, Nuaro=Mu1t‘Integ;‘A3'(1~EZ)
14, Ar¢=Aré+Nuare.

15, Inte32=1ntegl

16, I=1+]

17, 1IF Nuare=0. THEN RETURN

18, GOTO 6 —

Subroutine Param:

required by both the forward and reverse transverse Mercator.routinesh

This subroutine computes the various trigonometric.values

‘

s o o o
.

LS 7L 0 SR Y

030w
L] L ] L3 - -

10..
11,
12, .
13,
14, .
15,
16,
17..
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,

geod

term

1

F. Subroutine Xycale:

equation.(3,15),

g Additional.definitions of these terms

Sin=SIN(P)
Sin2=Sin*$in
Cos=C0S(p)

- Cos2=Cos*Cqs.

Cos3=Cos*Cos2
CosS=COs3*CosZ
Cos7=Cos5*Cos2

- L2=Ls],

L3=L2%],
L4=12»12
LS=sL4#,
L6=L4*12
L7=L6*L
L8=L4%1 4

.N=Aa/SQR(1-E2‘Sin2)

R*Aa’(l—EZ)ZSQR(1~E2‘Sin2)**3
D=E2/(1-E3)

A2=D#*Cos2

Ad=A2%p>

A6=A4%p2

A8=Ad4% A4

Al10=A8*A2

Al12=A10%42

T=TAN(P)

T2=T#T

T4=T2+712 e e e e e et s e e

T6=T4s12 ._
RETURN

may be found in the variables 1ist,

This subroutine compiles all the infinit

putation of"transverse,Mercator X and y
etie coordinates entéered by the operator,
the multiplying terms

A, and p in equation (3,14),

Terml, Term2,

of the third, fifth, and seventh power

s of .the fourth, sixth, and. eighth power functions of N,

- Térm1=1~T2+A3

‘ Step 7 is a direct imple
and Step 16 is a direct implementation of equation (3,15),

¢ series terms

coordinates from

-and Term3. are
functions of N,

Termd4, Terms, and Term6 are the multiplying

A, and y in

mentation of equation (3.14),

2, Térm2=5:18‘T2+T4+14‘A2-58‘T2‘A2+13!A4*64‘T2‘A4+4‘A6‘24‘Tﬁ‘A6
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10,
11,
12,

13,.

14,
15,
16,

17.-

Subroutine Gecalé:. This subroutine ¢ompiles. the infinite series terms needed

to

coordinates entered by the operator.

Term3a“61~479*T2+179*T4~T6+331!A2*3298‘A2'T2+1771’A2*T4‘
+T715%A4-8655%T2%A4
Term3bﬁ6080*T4‘A4*769*A6~10964*T2*A6+9480*T4*A6ﬁ412'A8*6760*T2‘A8
TermScﬁ6912*T4‘A8+88'A10—1632*T2‘A10t1920*T4‘A10.
Term3=Term3a+Term3b+Term3¢
X=N*(L*Cos+L3*C033/6*Term1+L5*C085/120*Term21L7!Cos7/5040*Term3)
- Tarm4=5~T2+9%A2+4% A4 ~
Tcrms*61-58*T2+T4+270*A2*330’T2*A2+445$A4r680'T2‘A4
+324%A6-600%T2%A6 +88%A8-192 *T2 A8
.,TermGaEIB85-3111*T2+543‘T4-T6+10899‘A2-32802‘T2’A2
Term6b=9219‘T4*A2+34419‘A4-129087‘T2‘A4+49644*T4‘A4
Term6c556385*A6—252084‘T2*A6+121800‘T4‘A6+50856’A8
Term6d=-263088‘T2‘A8+151872*T4‘A8+24048‘A10-140928‘T2‘A10
.Term6e=94080*T4‘A10+4672‘A12-30528‘T2‘A12+23040*T4‘A12
Term6=Term6a+Term6b+Terméc+Term6d+Term6e
Y=Arc+N* (L2*Sin*Cos/2+L4%*Sin*Cos3/24%Termd
+L6%Sin*Cos5/720%TermS+L8*S in*Cos7/ 40320%Term6).
RETURN .

compute the target's geodetic position from transverse Mercator
Terma, Termb,. and Termc are the

parentheses—enclosed t and n values multiplying the fourth, sixth, and

¢ighth.power terms of equation (3.31).
types of multiplying terms found in equation (3.25).

Termd, Termeh.gnd Termf are the same
Step 13 is an

implementation of equation (3.31). with the substitution N/R being made for

the (1 - n2) terms (eq. ¢3.29)).

Step 14 is a direct implementation .of

equation (3.25), .

-

e
W -
L ] -

[y
P -
[ ]

15,
16,.
17,

® & & e + e o »

Terma=5+3%T2+A2-4%A4—-9%A2%T2
.mTermb1é61+90*T2+46‘A2+45*T4-252*T2*A2-3‘A4+100*A6-66!T2‘A4
Termb2:~90*T4*A2+88*A8+225‘T4*A4+84‘T2*A6—192‘T2*A8
. Termb=Termbl+Termb2.
-Termc=1385+3633%T2+4095%T4+1574%T6
Termd=1+2*T2+A2
Termea5+6*A2+28‘T2r3*A4+8*T2'A2+24‘T4-4‘A6+4#T2!A4f24*T2‘A6,
- Termf=61+662%T2+1320*T4+720*T6
X2=X*X
X4=X2+X%2
.X6=X4%X2 .

12, X8=X4*X4

Lat=P+T‘(—X2/(2‘R‘N)+X4/(24*R‘N“3)*Terma
-XG/(720‘R‘N?*5)‘Tetmh+X8/(40320*R‘N‘*7)‘Termc)

Dlon=1/Cos®(X/N~1/6%(X/N)**#3%Termd+1/120*(X/N) **5*Terme .
~1/5040% (X/N) **7%Ternf)

Lat=Lat*360/ (2¢PI)

Lon=Lon0~D1on*360/ (2*PI)

RETURN
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Program. Operation ._.

The transverse Mereator rowtines are a subprogram to GEOD. When GEOD is.run,.
the operator is asked to select the units and datum/spheroid reference

s applicable to the ¢omputations to be performed. After these selections have
] been made, the master menu is displayed., One selection is for TRANSVERSE

A MERCATOR transformations, The operator selects the appropriate numerical entry
and the main program enters.the transverse Mercator routines., The operator is
then .instructed to.make the following simple selections:

’ A, Output device selection, which is displayed as:
l' SELECT OUTPUT DEVICE

CRT

THERMAL PRINTER : \
LINE PRINTER

0
1
2
B. Forward or reverse .transformation, which is displayed as: ... . .. .. ..

SELECT MODE -

1 = GEODETIC TO TRANSVERSE MERCATOR
2. =-TRANSVERSE .MERCATOR. TO. GEODETIC

C. Transformation parameter selection, which is displayed as:
SELECT MERCATOR PARAMETERS .

= MANUAL ENTRY OF MERCATOR PARAMETERS 1

NEVADA EAST ZONE .

NEVADA  CENTRAL ZONE
- = NEVADA WEST ZONE.

W nn

If the opérator selects any of the Nevada zomes, the program automatically
uses the stored transfoéormation parameters for the zone selected and proceads
to step E or.F as appropriate,

D. Manual input of .transformation parameters, which is displayed as:

ENTER ORIGIN LATITUDE IN D.MS

R———

ENTER ORIGIN LCNGITUDE IN'D.MS ___

E. Geodetic to transverse Mercator routine, for which the operator is prompted
as follows:

rs;

ENTER LATITUDE. IN D.MS .

ENTER LONGITUDE IN D,MS .
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The program computes. the transverse Mercator coordinates of the peint and
prints the results on the selected output device. The.results are. also
displayed on the CRT, regardless of output selection, Computed values arc
displayed in the.output units selected, and the format is as_shown below:

GEODETIC LATITUDE = 39 00'00.0000
GEODETIC LONGITUDE . & 11800 00,0000 .

TRANSVERSE MERCATOR X. = 665,775.57. 1.8, FEET
TRANSVERSE .MERCATOR Y .= 1,547,730.51 1.8, FEET

When. CONT is depreéssed, the program asks for the geodetic¢ coordinatc¢s of the
next point., .

F. Transverse Mercator to. geodetic routine: The. operator is prompiréd to enter
transverse Mercato: x._and y values in the units previously selected.

ENTER VALUES OF TRANSVERSE MERCATOR X AND Y

ENTER X IN I.S: FEET

ENTER Y IN I.S. FEET
The program computes. the geodetic coordinates of the poiat and pricts the >
results. The results appear on both the CRT and on the seiected output '
device unless the CRT was selected for output,. in which ¢as¢ the results are J

displayed only on .the CRT.. Printout format is e5 indicuted below:

65,775,537 1.S. FEET
1,547,730,51 I.S. FEET

TRANSVERSE . MERCATOR X
TRANSVERSE MERCATOR Y .

- 39 00.00.,0000
115 00 00,0000

GEODETIC LATITUDE
GEODETIC LONGITUDE

nn

When CONT is depressed, the program asks for the transverse Mercator
coordinates of the next point,

Program Validation

The transverse Mercator routines are validated by comparing results.with those .
in the. U.S. Coast. and Geodetic Survey plane coordinate intersection tables. for
the State of Nevada (ref. 4). During a validation exercise, any point may be
selected and used in either the forward or reverse programs.. Table 3.2 compare€s
several test coordinates from reference 4.with results obtained using the GMD. . ..
algorithms. The.first line of each entry gives the geodetic latitude and
longitude of the point along with the published USCGS transverse Mercator
coordinates,. The second line provides the transverse Mercator coordinates
returned. for the same point by the GMD routines,

For table 3.3, the published transverse Mercator coordinates for the points as ,_.i
given in table 3.2 were used as input values to the reverse transformation ‘
i
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program, The first line of. each entry shows the published geodetic latitude and
longitude.corresponding to the input value, The second line shows the geodetic

coordinatis obtained by the GMD routines. The third line shows the coordinates

that would be obtained using the GMD values obtained from the.forward transfor-

vution for each point, . .

Since entirely different algorithms were used for the forward and reverse GMD
transformations, sincé the GMD routines include higher order terms which are
usually neglected, and since the values obtained by forward GMD routines return
precisely thé correct. geodetic coordinates when entered into the reverse
routines, it is felt that the GMD transverse Mércator algorithms provide
accuracies that .are equivalent to those obtained from the closed=form Lambert
solutions,
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TABLE 3.2, GEODETIC TO TRANSVERSE MERCATOR VALIDATIONS

Source Léiitudé ioﬁg}tﬁde' ‘X ooordinsté Y,coéidi#ate
Nevada East.Zou¢
USCGS 35 00 00,0000 116 00 00.0000. 375,217.01 91,241.17W
GMD . 375,217.02 91,241,16
USCGS . 37 00 00.0000 115 00 00,0000 670,340.20. 819,487.76
GMD . 670,340..20 819,487.75
USCGS.. 40 00 00,0000 115 30 00,0000 523,345,20. 1,911,421.77
GMD . 523,345.20 1,911,421,78
Nevada Central Zone
USCGS 37 00 00.0000 116 00 00.0000 694,674.80 819,647 .52
GMD 694,674.80 819,647.51
USCGS 28 00 00.0000 - 117 00.00.0000 403,952.51 1,183,223.29
GMD - . 403,952, 52 1,183,223.29
USCGS 41 00 00.0000 116 30 00.0000 546,002,23 . 2,275,729.94
GMD 546,002.23. 2,275,729.93
Nevada West Zome

USCGS 38 00 00.0000 117 30 00.0000. 812,158.43 . 1,184,868.37
GMD 812,158.44 1,184,868.28 i ]
USCGS 40 00 00.0000 118 00 00.0000 663,416.87 1,911,945.60
GMD . - 663,416 .87 1,911,945.60
USCGS 42 00 00.0000 118 30 00.0000 522,649.99 2,640,036.34
GMD 522,649.99 2,640,036.33
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- TABLE 3.3, TRANSVERSE MERCATOR TO GEODETIC VALIDATIONS .
F . e . , . - e
. Source X coovdinate Y coordinate  Latitude Longitude
3
- Nevada East Zono
2
L USCGS. 375,217.,01. 91,241.17 35 00.00.0000 . 116 00.00.0000
X USCGS/GMD. 375,217.01 .. 91,241.17 35 00-00,0001 .. 116 00 00.0001 .
;- GMD . 375,217.02 91,241.16 35 00 00.0000 116 00 00,0000 ___
B
F USCGS 670,340.,20. 819,487.76. 37 00 00.0000 115 00 00.0000
: USCGS/GMD  670,340.,20 819,487.76 37 00 00,0001 115 00 00,0000..
| GMD. 670,340,.20 819,487.75. 37 00.00,0000 115 00 00,0000
uscas §23,345.20 1,911,421,77 40 00 00.0000 115 30 00.0000
USCGS/GMD  523,345.20 1,911,421.77 39 59 59,9899 115 30 00.0000
GMD 523,345.20 1,911,421,78 40 00 00,0000 115 30 00.0000
Nevada Central Zone-
USCGS 694,674.80 819,647.52. 37 00.00,0000 116 00 00,0000
USCGS/GMD  694,674.80 819,647.52 37 00 00,0001 116 00 00,0000 .
GMD . 694,674 .80 819,647 .51 37 00 00,0000 116.00 00,0000
USCGS 403,952.51 1,183,223.22. 38 00 00,0000 117 00 00.0000... 'i
USCGS/GMD  403,952,.51  1,183,223.29 38.0uC. 00,0000 117 00 00.0001
GMD . . 403,952,52 1,183,223.29 _38 00 00,00uvC~ 117 00 00.00.9
USCGS 546,002.23  2,275,729.94.. 41 00 00.0000 116 30 00.0000 :
USCGS/GMD  546,002.23  2,275,729.94 41 00 00.0001 116 3C 00.0000
GMD 546,002.23 2,275,729,93 41 00 00,0000 116 30 00.0000
Nevada West Zone f
USCGS 812,158,43 1,184,868,37  38-.00. 00.0000 117 30 00.0000 ?
USCGS/GMD  812,158.43  1,184,868.37 38 00 00.0009 .117 30..00.0001 |
. GMD 812,158.44 1,184,868.28 38 00 00,0000 117 30 00.0000
USCGS 663,416.87 1,911,945.60 40 00 00.0000 118 00 00.0000
USCGS/GMD.  663,416.87 1,911,945,60 40.00 00,0000 118-00 00.0000
GMD . 663,416.87 1,911,945.60___40_00 00,0000.__.118 00 00.0000
USCGs 522,649,99 2,640,036.34 . 42 00 00.0000 . 118 30 00.0000
USCGS/GMD  522,649.99 2,640,036.34 42 00 00,0001 118.30 00.0000. 3
GMD . §22,649.99 2,640,036.33 42.00 00,0000. 118 30 00.0000 . .
3-23 ,
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CHAPTER 4

RANGE AND ANGLE CALCULATIONS

This chapter provides general theory related to the calculation of angles and
distances between points on or off the carth's surface.. To make such
calculations, it.is necessary to relate real-world points to corresponding
points on on¢ or more representative spheroid models on which a uniform gridwork.
of parallels and meridians can form the basis for a suitable coordinate -
reference frame.

Geoid and Spheroid Def initions

Confusion arises from time to time regarding various range and angle
measurements made in regard .to. earth surface, geoid, spheroid, and airborne or
spaceborne points.. Some of the confusion is the result of ambiguities in the
definition of terms, even in the most authoritative references dealing with the
subject of geodesy. To attach specific meaning to terms used in this document,
a few brief definitions are provided below. Additional information and
mathematical derivations can.be found in réferences 1 tc 3, but caution should
be exéercised since, even though the namés of certain .terms. may be the .same, the
physical definitions may differ slightly.

Geoid .

The geoid is generally considered to be the true mean sea—level surface of. the
earth. It is an equipotential surface that arises as a combination of
rotational and gravitational forces but neglects tidal forces caused by the moon
or sun, Although the geoid surface. closely approximates the shape of a
spheroid, irregularitieés of mass distribution and density within the earth cause
the geoid surface to depart slightly from a true spheroidal shape. Deépartures
of up to 80 meters or more can be measured in mountainous regions and areas .of.
heavy mass concentrations, but normal separations are usually much less.

Although the geoid is a physical reality, it is not suitable for use as a
reference for locating points on, above, or below the earth's surface. Because
of .its irregular shape, a uniform grid system of paralléels and meridians can not
be constructed on its surface. That is,. the separation between adjacent
parallels and meridians would vary because of undulations in the geoid surface.

Reference Spheroid
Thg reference spheroid is a pure geométric shape.with its center situated at a
point which is taken as approximating the center of gravity of the eéarth. The

reference¢ sphéroid is defined by the lengths of. the semimajor and semiminor axes, .
Other paremeters sometimes associated with the spheroid (but more o6ften
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associated with a selected datum) are the position of the spheroid center with
respect to a standard coordinate reference and the alignment of the.spheroid
with selected reference points on the surface of the earth., (Note: As used in
this dooument, reference spheroid refers only to the dimensions and eccentricity
of the figure,)

Obviously the selection of reference spheroid parameters affects the .amount of
departure between the. spheroid and geoid surfaces. In recent years, due to ..
satellite observations, the ability to make accurate earth measurements has
improved considerably, and. agreement between modern spheroid models is generally
very good (within 10 to 20.meters). Efforts.toward further improvements are
probably not practical since an exact fit to the slightly irregular geoid .
surface can néever.be achieved, regardless of how accurate the measurement systems
become, _

Datum.
As used in this document, datum specifies the location of the origin point .of

the reference spheroid and its alignment with.one. or more specified earth
reference points,

Normal Line

The normal line is defined as a line constructed perpendicular to the spheroid K
surface at any point. ]

Fundamental Plane

The fundamental plane for a spheroid point is defined as the tangent plane to
the spheroid at that point. The fundamental plane is used to measure elevation
angles for points. on, above, or below the reference sphéroid. Jn off-spheéroid
cases, the fundamental planeé is tramslated to the point of concern along a
normal line drawn from the spheroid surfac¢e through the point.

Vertical Line

A vertical line is. a line constructed pérpendicular to the geoid surface at any
point., Since the geoid is an equipotential gravitational surface, the vertical
line also represents the direction of the gravitational vector at the point .
where it passés through the geoid surface. At points off the geoid surface, the
vertical line follows the diréction of the gravitational vector,

Geodetic Position
The geodetic position of a target above, below, or on the earth’s surface is

defined relative to the position on the reference. spheroid at which a normal
line would pass through the target point., Geodeti¢ latitude is the angle
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between the normal line and the spheroid equator. Geodetic longitude is the
angle between the meridian plane passing through .the spheroid point and another
meridian plane passing through an arbitrary zero~longitude reference point.

Separation of Geoid

The separation of geoid at any point is the distance between the geoid and the
reference spheroid measured along a vertical line passing through the point.
The value is different for different reference spheroids and datums since the
shape of the spheroid .and the location of the origin affect the position of the.
spheroid surface with respect to the geoid surface. A negative value for the
separation of geoid implies that the geoid surface lies below that of the
reference. spheroid., For example, in relation to NAD=-27,. the separation of geoid.
at the NASA AN/FPS-16 radar.site.is —24.4 meters.

It should be noted that the sea-level or geoid elevation of.a point is a measure
of the distance along the curve followed by a gravitational vector going through.
the point to the surface of the geoid, whereas the spheroid elevation is the
distance between the spheroid and the same point measured along the spheroid
normal line passing through the point. This means that spheroid elevation and
geoid elevation are actually measured along different paths. However, the.
practice of obtaining spheroid elevation as_the sum of sea—level elevation and
geoid separation causes no difficulty since the error introduced by this
approximation is far less.than the uncertainty in the position of. the geoid
surface. Published geoid separations are -normally obtained through the use of a

spherical harmonic equation which approximates the gravitational potential field .

of the earth. The constants used in these equations are obtained. through
measurements at several hundred reference. points, Values.at other points are
then computed from the approximating equation. . Thus, the published values.of
geoid separation.are probably accurate only to about 1 to 2 meters at most
locations. s oo e et e wratpte s et e ram e e e

Geodetic Azimuth

Geodetic azimuth is a directional measurement between .two spheroid points.. For
example, the geodetic azimuth from point. A to point B is def ined as the angle
between the meridional. plane passing through the point A and a plane containing.
both the normal line.at A and the point B,  This is also known as spheroid
azimuth,

True.Azimuth -

True azimuth is a directional measurement betweén two points on, aboveé, or below
the earth's surface, If these two points are C and D, the true. azimuth from . C
to D is defined as the angle between the meridional plane passing through C and
the plane containing the normal line at C as. well as_the point D, If C and D
were earth surface points whose spheroid coordinates were given by A and B in .

the preceding section, then the true azimuth would differ from the geodetic
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azimuth because the normal line drawn.from B through D is not parallel to the
normal line drawn from.A through C,

Geodesic -

The geodesic is defined as the curve of minimum length between two points lying
on the surface of a spheroid, :

Astronomical Position ... ..

Astronomical positions are determined by star observations, The angles are
measured with respect to.a plumb-bob vertical placed at the point of.
observation, VWhile it might first appear that this would align the system to
the underlying (or overlying) geoid surface, the fact that the observation
points are at some specified elevation abové or below sea level means that the
direction of the gravitational vector is not influenced by the same relative.
mass geometry as the equivalent geoid point., Therefore, the direction of the

vector will be slightiy different from the direction it takes at the point where .

it cuts through the geoid surface. ..

Astronomical position is also subject to change due to the precession and
nutation of the .earth's axis of rotation., This pPhenomenon is caused by three
influencing factors whose net effect is that, over a 7-year period, the axis of

rotation moves about a mean position with an amplitude from approximately 0 to.
0.3 arc second,

The common definition of astronomical latitude is the inclination of the local .
vertical measurement above the equatorial plane, Astronomical longitude is the
angle between one plane containing the axis of rotation and the meridional

vertical at the observation point, and another. containing the axis of rotation.
and .the Greenwich meridian,

Considering the variations in the position of the rotational axis, the
deflection of the gravitational vector from its direction at the underlying (or.
overlying) point where it cuts through. the. geoid surface, and the fact that the
plane of the local vertical is not exactly parallel to the axis of rotation, it
is obvious that .some ambiguity is present .in the common def inition of the
astronomical coordinates.. Because of this, it seems desirable to correct the .
ground-level observations to those for the geoid surface. However, this is
often impractical becausé.the mass distribution of underlying material is
generally not.known, and, even if known, the effect of complex mass
distributions on the gravitational veétor is difficult to compute. Therefore,.

either the corrections are neglected or standard correction factors are applied, .

Since these corrections relate. to fiéld work which is not the subject of this
do¢ument, they will not be presentéd here, However, aéditiongl information
about astronomical corrections can be found in reference 3. Computations used

in the baseline -geodetic programs assume that the astronomical. coordinates have
beén corrected to the proper geoid=level values.
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Astronomical Azimuth ——

The astronomical. azimuth from point A to point B is defined as the angle between
two plancs, each of which contains the vertical at point A, but.one of which
contains the celestial north pole and the other of which passes through point B,

Deflection of Vertical

The deflection of the vertical .at any point on the earth's surface is taken as
the angular difference between the spheroid normal passing through the point and .
the. plumb~bob vertical at the same point, It is measured .in terms of its
meridional compoment and prime vertical components, which are represented by

Hg ~ B

,oand Ay =g, (4.1)

respectively,. where o represents astronomical latitude, ug represents .
geodetic latitude, la represents astronomical longitudea,andlg represents ..

geodetic 1oniitude.
Astronomical and geodetic azimuths can also be related by

Aa - A8 f'—(La - ls)sin‘ps ‘ (4.2).

where Aa is the astronémical azimuth and Ag is the geodetic azimuth,

Sea-Level Elevation e

The sea-level elevation of a point is the height of the point above or below the
geoid as measured along the gravitational vector passing through the point. Sea-~
level elevation is generally given with all the various types of coordinate
referencés since the position.of the-geoid with respect to the point in question
is_the same regardless of the referénce spheroid selected.

Spheroid Elevation .

The spheroid elevation of a point is the height of the point above or below the
teference spheroid as measured along the normal line passing through the point.

Coordinate Systems:

Several coordinate systems are used to perform geodeti¢ computations in the
baseline programs. These coordinate systems are explained in the following
paragraphs.
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Geodeti¢ (Spheroid)..Caardinates ..

Geodetic coordinates are given in terms of latitude, p, and longitude, A. AS — .o,
noted above, elevation is generally given as the height above mean.sea lével.
(height above the geoid). Thus, in all spheroid caléulations, the sea=level
clevation must be correcteéd by the amount of the. geoid sepsration,. Spheroid
¢oordinates are generally given with respect to the North American Datum (1927).
When coordinates are given with respect. to one or more datums, the datum .
designator (such as NAD=27 or WGS=72) is generally shown alongside each
¢oordinate..

Astronomical Coordinates .
Astronomical coordinates are also given in terms of  latitude, n, longitude, A,

and sea-leével elevation, When the possibility of confusion exists, astronomical
coordinates are labeled as astronomical,

Geocentric Coordinates

Geocentric. coordinates are given in terms. of geocentric latitude, &, and

geocentric longitude, A. Geocentric altitude. is the distance from the surface

of the spheroid to the target point as measured along the geocentric position

vector, Note that, for. idéentical points, the. values of geocentric longitude and .
geodetic longitude are the same.

Usiiversal Space Rectangular Coordinatés

In tracking system geodeti¢s, the. universal space rectangular coordinate (E-F-G)
frame of reference is a right-handed Cartesian system whose origin is at the
c¢enter of the reference spheroid and whose G axis is coincident with the mean
axis of rotation of the reference spheroid., Theé E axis passes through the
Greenwich meridian, and the E and E axes define the equatorial plane. The. j
location of the origin point for the E-F-G systeéem varies from one datum to |
another, In this document, the WGS-72 datum is taken as the standard, and the q
¢enters of 'all other datums are given in terms of AE, AF, and AG j

measuremenits from the. WGS-72 origin, Since most tracking system geodetics are
réferenced to a fixed earth, it is easy to overlook the fact that the E-F-G

coordinates apply to a rotating system whose rotation rate is the¢ samz as that

of the earth, : !

Local East-North-Vertical Coordinates

The local east-north-vertical coordinate (X-Y-Z) frame of referénce-is a right- r
handed Cartesian system that is centeréd at any point .on, above, .or below the .
reference spheroid. The X coordinate radiates in the local. east difection
measured at the point, the Y coordinate radiateés in the .north direction alang
the meridional plane passing through the point, and the Z coordinate radiates
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upward along the outward normal that passes through the point, The X and Y
coordinates 1ic.in the fundamental.plane passing through the origin point,

Local Space Rectangular Coordinates

The local space rectangular coordinate (E'~F'=-G') frame of reference is a right-
handed Cartesian system whose origin is centered at any point on, above, or
below the reference spheroid, The E', F', and G’ coordinates are parallel.to
but. spatially offset from the E, F, and G coordinates described earlier..

AE~-AF-=AG Coordinates ...

The AE-AF-AG coordinates are .used to describe the positions of E'-E'~-G'-
origin points in the E~F-G system. They are used for translational purposes..

Local Rangeé—Azimuth-Elevation Coordinates -

The. local range—azimuth-clevation (R-A-E) coordinate frame is the spherical
equivalent of the X-Y-Z Cartésian coordinate system., In this system, azimuth,
A, is the angular component of the target position lying in the fundamental
plane and measured clockwise from true morth. FElevation, E, is the inclination
of the .target above the fundamental plane. Range, R, is the slant range of the
target from the coordinate origin., For radar and optical trackers, thé origin
of both the R-A-E and X-Y~Z coordinate systems. is taken as the intersection .of
the horizontal and vertical (H~V) axes of the antenna pedestal. Note that the
angle measurements made by a tracking systeém must be_corrected by a minor
rotation. from plumb-bob vertical inté alignment with the fundamental plane and
spheroid normal., This is accomplished as part of the-mislevel corrections,

Subroutines Common to Range and Angle Programs

The range and angle calculations used in the baseline software are based on
spheroidal relationships.and on a simple application of vector and matrix
mathematics. The more common spheroidal relationships were given without proof
in equations (1.3) to (1.8) in chapter 1. In the baseline software, standard
subroutines are often shared by many of the subprograms. Each of these common .
subroutine algorithms is provided below and is not repeated in later sections. .
Also note that the terms U, W, and H used in the subroutines which follow are
generalized transfer variables. Individual ¢alling programs will set specific
program variables, let us say Lat, Lon, and Eiev, equal to U, W, and H prior. to
calling a specifié subroutine,

A. Subroutine. Néalé¢: Subroutine Neale returns a value of the east-west radius
of ¢urvature at a specified latitude on thé reference spheroid, This
subroutine was also presented.in chapter 2, but it is repeated heré for .
¢onvénienée., Néalc is a direct implementation of equation (1,6),
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1. Sinu=SIN(U)

2. -Sin2u=Sinu*Sinu

3., N=Aa/SQR(1~E2*Sin2u)
4, RETURN.

In this subroutine, U rcprésents the geQdctic latitude of the point in the
selected spheroid/datum system, Aa and E2 are the length of the semimajor

axis. and. the square of the eccentricity of the reference spheroid, and N.dis. . ...

the east-west radius. of c¢urvature,

Subroutine Rcalc:. Subroutine Rcalc returns.a value of the north-south.
radius of curvature at a. specified latitude on the reference spheroid.
Reale is a direct implementation of equation (1.5).

1, Sinu=SIN(U)

2. Sin2u=Sinu®Sinu

3. R=Aa*(1-E2)/(1-E2%*Sin2u)**1.5
4. RETURN

In this subroutine the variables U, Aa, and E2 are the same as described
previously. The.variable-R represents the north-south radius of curvature,
Subroutine Efgecalc:  Subroutine Efgcalc returns the E-F-G coordinates of a
point above, below, or on the referéence spheroid.

. Sinu=SIN(U).

. .Cosu=C0S(U)
Sinw=SIN(W)
Cosw=C0S (W)
E=(N+H)*Cosu*Cosw
F= (N+H) *Cosu*Sinw

. G=(N*(1=E2)+l)*Sinu
RETURN

A bW
. -

In this subroutine, U is geodetic latitude and W is geodetic longitude. FE,
F, and G.are the Cartesian cobrdinates of the point given in the universal
space rectangular coordinate system. N is the east-west radius of curvaturé
and H is.the height of the target. above the reference spheroid. H is
measured along the normal line at the. surface point def ined by U and V¥,

Subroutine Xyzrae: Subroutine Xyzrae converts radar-centered east, north,
and vertical (X-Y-Z) Cartesian coordinates into“radar*centened range,
azimuth, and élevation spheric¢al coordinates. The computational algorithm
iss o

1. . Hyp=SQR(X#*2+Y*%2)
2. Rng=SQR(llyp**2+7Z+#2)
3. . Abs1=ABS(X/Hyp)

4, IF.Abs1>.707 THEN 7
5. -.Az=ASN(Abs1)

6. GOTO 9

7. Az=ACS(ityp/Rng)

rn
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8. .Abs2=ARS(Z/Rng)
9.-MIF-Ab82>.707"THEN 12
10. .E1=ASN(Abs2)
11, GoT0 14
12, E1=ACS(Hyp/Rng)
13. Quadx=34
14, IF X>=0 THEN Quadx=12.
15, OQuady=23
16.,. IF Y)=0 THEN Quady=4]1 _
17, .Quadt=Quadx+Quady
18, 1IF Quadt=53 THEN Quad=1
19, JF Quadt=3s THEN Quad=2
20, .IF Quadt=57 THEN Quad=3
21, IF Quadt=75 THEN Quad=4
22, IF Quad=2 THEN Az=180-A;
23, . IF Quad=3 T4EN Az=180+Az
24, IF Quad=4 THEN Az=360-Az
25. _IF Z<0 THEN El=-El
26. RETURN

As used in this subroutine, Hyp is the hypotenuse of a

ttiahgle,formed.ﬁy
the target*s X and Y coordinates lying in the fundamental plane passing
through the tracking site,

the target point, It is found as the hypotenuse  of the triangle formed by
Hyp and the Z coordinate., Absl is the absolute value of X/Hyp. and Abs2 is
the absolute value of Z/Rng. Absl and Abs2 are used to determine the most
accurate computational method for determining the raw azimuth and elevation
angles, When Absi is greater than 0.707, the slope of the arccosine
function is steeper and this yields more accuracy in .the calculation of the
azimuth angle.. Conversely, when Absl is less than 0.707, the slope of the
arcsine function is steeper and greater accuracy is obtained by using the
arcsine solution, A similar comparison is made using Abs2 to optimize the
a4ccuracy of the elevation angle computation, : .

Program steps..13 to 25 are a GMP~derived me thod for resolving the azimuth
quadrant. If the value. of X is pusitive, Quadx is given the value 12,
meaning that X lies in either quadrant 1 or quadrant 2, If X is less than
0, Quadx is given the value 34, indicating that X lies in .either quadrant 3
or quadrant 4, Similarly, if the value of.Y is positive, Quady is given the
value 41, indicating that Y lies in either quadrant 4 or quadrant 1, If Y.
is negative, Quady is given the value of 23, indicating that Y lies in either
quadrant 2 or quadrant 3. The sum of Quadx and Quady is Quadt (step 17).
The value of Quadt can.only be. 53, 35, 57, or 175. If the value is 53, then
Quad. is set equal to 1.,indicating that the point lies in the first
quadrant., Similarly, if Quadt equals 35, 57, or 75, then the point lies in
qQuadrant 2, 3, or 4..respectively, and Quad is set equal to 2, 3, or 4 as
the case may bée, When the point lies on one of the coordinate axes, the
coordinate value is assumed to be positive, However, the -subroutine

Provides an identical sélution for on-axis points if they are assumed to be
negative,
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Obviously. for quadrant 1, the azimuth . value. is equal to Az. For.the second
quadrant the azimuth.value.is equal to 180 - Az, for the.-third it is cqunl
to 180 + Az, and for the.fourth it is equal to 360 - Az,

In step 25, the sign attached to the elevation angle is determined by noting
that El is negative when 7 is negative and positive when % .is pasitive, .

Subroutine Raexyz: Subroutine Raexyz converts target position in spherical.

range, azimuth, and ¢levation ¢oordinates into Cartesian east~north=vertical
(X-Y-Z) form, ...

Cose1=COS(E1)
-X=Rng$SIN(Az) *Cosel
Y=Rng*COS(Az)*Cosel.
Z=Rng*SIN(E1)
RETURN

B WD e
[ - - - -

In this subroutine, El is. target elevation, Az is azimuth, and Rng is range.
As in the.previous subroutine, Az is measured clockwise from true north, FE1
is 0 when horizontal (lying in the fundamental plane), +90 degrées at. the
zenith point, and ~90 degrees vwhen.pointing vertically downward, —
Subroutine Xyzefg: Subroutine Xyzefg is designed to rotate local Cartesian
coordinates between .an X-Y-Z (east-north-vertical) reference and a local
system aligned with the earth-centered E~-F~G (universal space rectangular).
coordinate .frame, When the subroutine is entered, if Matflg equals 1, the
subroutine will rovate X=Y~Z coordinates into E~-F=G alignment, 1If Matflg .
equals 0., the subroutine wi1ll rotate .local E-F-G-aligned Cartesian._
coordinates to X-Y-Z alignment. The values stored.in arrays A and B are the.
direc¢tion cosines for standard three~dimensional .forward (X to E) and

reverse. (E to X) rotations. Mathematically, the forward transformation may
be expressed as:

E " sin W -¢cos W sin U. cos W cos U X.
F = cas W sin W sin U ~-sin W cos U Y
G Q ¢os U sin U y/

or ia program variables

B(1). A1,1)  A(1,2)  A(1,3) X(1)
E(2) | =| A(2,1)  A(2.,2) A3 X(2)
E(3) AGLD AGL2) A@S) | | X0

Rimilarly, the reverse transformation is expressed mathematically as
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X sin W cos. W 0 E.
Y || -cos W sin. U sin ¥ sin.U . gas U F
Z cos W.cos U =-sin W ¢os U sin U G

or in program variables

X(1).. B(1,1) B(1,2) B(1,3) . E(1)
X(2) | =] B(2,1) B(2,2) B(2,3) E(2)
X(3) B(3,1) B(3,2) B(3,3) E(3)

The subroutine algorithm is:

. Sinu=SIN(U)

. Cosu=COS(U)
Sinw=SIN(W).
Cosw=COS(¥)
B(1,1)=A(1,1)=Sinw
B(2,1)=A(1,2)=Cosw*S$inu .
B(3,1)=A(1,3)=Cosw*Cosu
R(1,2)=A(2,1)=Cosw
B(2,2)=A(2,2)=Sinw*Sinu
B(3,2)=A(2,3)=Sinw*Cosu
B(1,3)=2A(3,1)=0

12, . B(2,3)=A(3,2)=Cosu

13, B(3,3)=A(3,3)=Sinu.

14, 1IF Matflg=1 THEN MAT E=A#*X

15, 1IF Matflg=0 THEN MAT X=B*E

16.. Matflg=0 .

17. RETURN.

e o © o o ® & @
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In this subroutine, U is geodetic latitude ond W is geodetic longitude. The
A array develops. the forward direction cosines used for the X-Y-Z to E-~F-G
rotation, and the B array develops the inverse direction cosines for the
E-F-G to X-Y-Z rotation. The symbol E in steps 14 and 15 represents a three-
dimensional array whose elements. E(1), E(2), and E(3) contain the current
values of E, F, and G. The symbol X in the same program steps represents a
three~dimensional array whose elements X(1), X(2), and X(3) contain the
current values of X, Y, and Z.. The BASIC command MAT E=A®*X causes the 9
elements of matrix A to multiply the 3 elements of.matrix array X,.
Similarly, MAT X=B*E causes the 9 elémcnts of .matrix array B to multiply the
three elements of matrix array E,
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Program to CalculaQQ'FOrwa;d and Reverse Azimuth and Eleva

tion
Angles and True Slant Range

The forward and reverse azimuth and elevation angles and the slant range betwéen
any two points (for e¢xample, A and B) are ¢alculated by first converting the
position coordinates of each point from. geodetic-form to the corresponding carth-.
centered E-F~G elements, Using_simple. vector subtraction, the difference vector
(AE-AF-AG) is obtained. At the point A, the elements of the difference

vector are first rotated into local east, north, and vertical alignment and then
converted to spherical range, azimuth, and elevation form. This yields the
forward azimuth and elevation angles along with the truec slant range,

Similarly, at the point B, the negative values of the elements of the difference.
vector are first rotated into.local east, north, and vertical alignment and then
converted to spherical form to.yield values for the reverse azimuth and
¢levation parameters. This sequence is shown graphically in figure 4,1,

On-spheroid.

_ G
Vertical point 2 |
-North™ | i]
Tast . |
(AE-AF-ACJP\ /1E—F—G)z
Vertical

Cn-spheroid
point 1—~_ _ .
I - .
\ Geocentric. center .
of ecarth spheroid
I
Figure 4.1,
Variable Names
Name Description.
Altl Spheroid .elevation of point 1
Alt2 Sphefoid elevation of point 2
Azl Forward azimuth in degrees
=12 — ]
?
a
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i Az2. Reverse azimuth in degrees

§ De, Df, Dg Elements of difference vector -

!

% E Designator of threc~dimensional E(*) array in

BASIC array multiplications (different from
symbol E shown below)

_ E, F, G , Earth-¢entered universal rectangular coordinate
a system elements

E(1), E(2), E(3) Elements of three-dimensional E(*) array

E01, FO1, GO1 Earth-centered E, F, and G.coordinates of point 1

E02, F02, GO2, Ear th-centered E, F, and G coordinates of point 2

E11 . Forward elevation in degrees

El12 Reverse elevation in degrees

Elevl Sea—~level elevation of point 1 .

Elev2 . .. Sea—level elevation of point 2

Geosepl . Geoid separation at point 1 — 1

Geosep2 Geqid.sepgratiOnvat point 2

Latl Latitude of point 1 in degrees

Lat2 Latitude of point 2 in degrees

Lonl Longitude of point 1 in degrees

Lon2 4 Longitude of point 2 in degrees . 3

Matflg Flag to select. E'-F'-G' to X-Y-Z or X~Y-Z to ‘
E'-F'-G' rotation in Xyzefg subroutine

Ling Slant range in selected units %

X . Designator of three—~dimensional X(*) array in . :

BASIC array multiplications (different from
X symbol shown .below)

X, Y, Z A Elements of east, north, vertical coordinate .
frame of reference

B Y]

X(1), X(2), X(3) Elements of three-diménsional X(®) array
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Computational Algorithms

The. essential algorithms for the forward and reverse azimuth and slant range_ _

calculations are given in the following _paragraphs, -

A, Gzentry subroutine: This subroutine allows-the operator to enter ggodetic
coordinates, sea~level elevation, and geoid separation for the two
coordinate points, The input variables for point 1 are Latl, Lonl, Elevl,
and Geosepl, The input variables for point 2 are Lat2, Lon2, Elev2, and
Geosep2. . The subroutine is called by the main subprogram Gz and returns to
Gz after the appropriate entries have been made.

B. Gz subroutine:; The Gz subroutine _computes the slant range and the forward
and reverse azimuth and elevation angles between point.1 and point 2, Upon
entering Gz, the program calls Osel which requests the opérator selection of
an output device. When the output device selection has been made, the
program returns to Gz. Next, Gz calls Gzentry which requests operator
inputs for points 1 and 2., These. consist of the latitide, longitude, sca-
level elevation,. and geoid separation for each.point., At steps § and 6, the
bprogram converts each of_the¢ sea-level. (geoid) elevations to spheroid
elevations. by adding the geoid separation for each point to its sea~level

elevation., 1Imn the same steps, the spheroid elevations in the selected input ..

units are converted to meters by applying the appropriate conversion factor
(Uenv). The spheroid elevations (in meters) are labeled Altl and Alt2. .

Next, the program assigns the transfer variables U, W, and H the values.of
Latl, Lonl, and Altl and calls subroutine Ncalc which computes the east-west
radius of curvature (N) at point 1. The same values of N, U, W, and H are
then used by subroutine Efgcalc to compute the E-F-G .coordinates of point 1,
which are stored as EO1, FO1, end GO1, The same. proéedure is then followed
for .point 2. U, W, and H are assigned values of Lat2, Lon2, and Alt2, end
the value of N at point.2. is computed for use. in subroutine Efgcalc,

Efgcalc returns. the E-F~G coordinates of point 2, which are stored as E02,
F02, and G02. The AE<AF-AG elements .from point 1 to point 2 .are

computed in steps 23 to 25. At step 26, Matflg is set equal to 2, and the
three E-F~G elements and the.latitude and longitude of point 1 are used by
subroutine Xyzefg to compute the coordinates of point 2 in a Cartesian E-N-V
frame of refereénce centered at point 1. At step 37, the.Cartesian E~N-V
elements of the point 2 position vectcr are converted to R=A-E form. The
computed Az and El values are .stored as Azl and E11., Next, the neégative
values of the AE-AF-AG vector are assigned to6 the MAT E array (E(1),

E(2), and E(3)) and U and W are assigned the values of latitude and
longitude for point 2, Matflg is set equal to 2 for a reverse (E~F-G to
X~Y-Z) rotation, and subroutine.Xyzefg computes the E~N-V Cartesian élements
of the vector from point 2 to point .1, Theése values,which are ré¢turned as
X(1), X(2), and X(3), are assigned to variables X, Y, and Z, the transfer
variables for the Xyzrae subroutine.. Xyzrae computes the azimuth and
elevation of .point 1.from point 2 along with the range between the two

points, The reverse-azimuth and elevation values are stored as. Az2 and E12. ..

The range between the points is stored as R12, Subroutine Gz then calls
Gzprint, which converts. the range value from méters back to the.operator-
selected units, then prints the forward and reverse azimuths and elevations
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and the range between the two points, After the printout has been

) completed, the pProgram returns to Gzent to await new operator entries for
' roint 1.and point 2,

Gz: |
GOSUB 0Osel
Gzent: |
GOSUB Gzentry
‘A1t1=(E1ev1+Geosep1)/Ucnv :
: AltZE(Elev2+Geosep2)/Ucnv
-U=sLat1 :
W=Lon1l
~H=A1t1
GOSUB Ncalc
- GOSUB Efgcalc
12, Eo01=E.
- FO1sF
14, Go1=g
U=Lat2 ..
16.. W=Lon2
17. H=Alt2
18. GOSUB Necalc
19, GOSUB-Efgcal¢
20, E02=E
21, FO02=F
22, G02=G
23, De=E02-E01
24, Df=F02-F01
25, Dg=G02-GO1 _
26, . Matflg=2
27, E(1)=De
28. E(2)=Dpf
29. FE(3)=Dg
30. Us=Lat1
31, W=Lon1l
32, MAT X=ZER
33. GosuB Xyzefg
34, X=x(1)
35, Y=X(2)
36, Z=X(3)
37. GOSUB. Xyzrae
38, . Azl=Ag
39.. El1=E1 .
40, U=Lat2 ..
41, _ W=Lon2
42, E(1)=-pe
43, E(2)=Df
44,. F(3)=Dg
45, MAT X=ZER
46, Matflg=2
47.. GOSUB Xyzefg
48. X=X(1)
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49, - Y=X(2)

50, Z=X(3)
51,_GOSUB Xyzrae
52. R12=Rng

53, Az2=Az

54, . El2=fR]

55. GOSUB Gzprint
56. PAUSE

57. GOTO Gzent

C. Subroutine Gzprint: This subroutine

the computed values for slant range a
elevation,

prints both the input coordinates and
nd forward and.reverse azimuth and

Program Operation.

The slant range and .forward and reverse a
subroutine to GEOD._ When GEOD is run, af

aster menu is.displayed, One selection
on the menu is TRUE GEODETIC FWD AND REV AZ AND EL AND SPHEROID DIST. The
operator selects the appropriate numerical entry and the main pProgram enters the
distance and.angle calculation subroutines,

After entry into the subroutine, the operator is asked tc make the following
simple entries:

A. Output device selection, which is displayed as:

SELECT OUTPUT DEVICE

CRT
THERMAL PRINTER

0
1
2 = LINE PRINTER

B i on

B, Parameter entries, which are displayed sequentially as;:

ENTER GEODETIC LATITUDE OF POINT 1 IN D.MS.

ENTER GEODETIC LONGITUDE OF POINT 1 _IN D.MS

ENTER SEA-LEVEL ELEVATION OF POINT 1 IN (selected units)
ENTER .GEOID SEPARATION AT POINT 1 IN (selected units)
ENTER GEODETIC. LATITUDE OF POINT 2 IN D,NS

ENTER GEODETIC. LONGITUDE OF POINT 2 IN D,MsS

ENTER SEA-LEVEL ELEVATION OF POINT 2 IN (selected units)

ENTER GEOID SEPARATION AT POINT 2 IN (selected units)
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If the operator does not know the value of geoid separation at either.point,
a value of O should be entered for both geoid separations. This will cause
the calculations to be performed as if the sea~level elevation at both.
points were the samec as the spheroid elevation,. For most applications,. the
error will be insignificant (probably less than the least significant digit
displayed). However, it. should be noted that the value of geoid separation
must be known and entered for both points, or zero must be entered for both
points. If the true value for geoid separation is entered for ome point for
[; which it .is known and zero is entered for the. other point because the. true

ST TR

X,
T .

- value is_unknown, there will be a measurable error_in_all the calculations,

The program then performs the computations and, when completed, displays. the .
results in the following typical form. Angle data are provided as degree——
minute~second, degree, and radian valmes.

POINT 1.GEODETIC LAT = 00 00.0000. ( 35,000000000) ( 0.610865238).
POINT 1 GEODETIC LON.= 118 00 00.0000.. (118,000000000) ( 2,059488517)
POINT 1 SEA LEV ELEV = 500,000 METERS
POINT 1 GEOID SEP — w - 25,000 METERS

- w
oo tr

POINT 2 GEODETIC LAT = 36 00 00.0000 ( 36.000000000) ( 0.628318531)
POINT 2.GEODETIC LON = 119 00 00.0000- (119,000000000) ( 2.076941810)
POINT 2 SEA LEV ELEV = 250.000. METERS
POINT 2 GEOID_SEP = 15.000 METERS
FORWARD AZ. (1 TO 2) = 321 00 47,7143 (321.013253980) (.5.602738225)
FORWARD EL (1 TO 2) = - 0 44 55,2557 ( -0.748682135). (~0.013066968)
REVERSE -AZ (2 TO.1) = 140.25 57,0875 (140,432524308). ( 2.451009926)
REVERSE EL (2.TO_1) _= - 0 32.26.8292. (. -0,540785893) (-0.009438494)
SLANT 'RANGE = 143326 .771 METERS

When CONT is pressed, the program returns to the input steps and prompts.the
operator for entry of.the second set of coordinate. points.. In cases where

one point remains the same but the other point varies, the operator need ‘
only repeatedly press (ONT "as the redundant point inputs are reéquested, :
This will cause the program to use. the values last entered for those points. ‘
Oncé the output device selection has been made, it .will remain .in effect so
long as the program remains in the range and angle calculation subroutine.

Program.Validation

Two methods are available to validate the range and angle calculations. The j
first uses data_points which allow a trivial solution that can be checked on a .
desk calculator.using simple trigonometry.. Two.such points can be located on
the equator but at different lomgitudes so that the result is simply the chord
of a known circle.. Or, the points may be at the same longitude but with one
point at the equator and the other at the north pole, forming & triangle whose ; ‘
base -is. the semimajor axis of the reference spheroid and whose leg is the

semiminor axis of the reference spheroid, The second validation technique
compares calculated.angle data with data published in USCGS or DMAC documents, j
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This can provide a rough c¢heck, but wheun a difference is found, there . is no way

to know whether the error is in the published data, the calculated data, or

both., In addition, the published USCGS. and DMAC values are not generally given .-
to the precision that is necded to acéurately compare results., Therefore, the
trivial geometri¢ solutions are considered to be a more acourate validation

method since, even though a trivial solution is used for comparison purposes,

the values obtained from the program are obtained using all the computational
algorithms used for the more .complex solutions.

In this dooument, the first method is. employed, and the results are shown in
table 4.1, The first comparison is. made using two poiats situated on.the.
equator but with a difference in longitude of 180 degrees, the second
comparison is made.using two points situated on the equator but with a
difference in longitude of 90 degrees, and the third comparison is made using
the first point on the. équator at the Greenwich meridian and the second point
at the north pole. All c¢calculations were made using the Clarke spheroid and a

spheroid elevation of 0.

£
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TABLE 4.1,

TRIGONOMETRIC VALIDATION OF-ANGLE DATA... -

Parameter GMD_baseline routiﬁeﬁ

Pt 1 latitude
Pt 1 longitude
Pt 2 .latitude
Pt 2 longitude

Forward azimuth .
Reverse azimuth
Forward elevation ..
Reverse elevation.
Slant range

Trigonometric $6 on

0.00 00,0000
0 00 00.0000
0 00.00.0000
180 00 00,0000

Indeterminant

Indeterminant.
--90.000000000
- 90,000000000

12,756,412.800 m .

0 00 00.0000

0.00 00,0000

6. 00 00,0000

180. 00 00.0000
Indeterminant —
Indeterminant

- 90,000000000.... .

- 90,000000000
12,756,412.800 m.

Pt 1 latitude
Pt 1 longitude
Pt 2.latitude-
Pt 2 longitude

Forward azimuth
Reverse azimuth
Forward elevation
Reverse elevation
Slant range

0 00,0000
0 00.0000

0 00,0000 .
0

0
0
0
0 00,0000

0
0
0
90 0

90 00 00,0000 .
270 00 00,0000.

= 45,000000000

- 45,000000000

9,020,145.994 m .

00 00,0000 -
00 00.0000 P
00 00,0000

00 00,0000 .

Booo

90.00.00,0000 . ‘
270 00 00,0000.- —
- 45,000000000
- 45,000000000
9,020,145,994 . m

Pt 1 latitude
Pt 1 longitude
Pt 2 latitude-
Pt 2 longitude

Forward azimuth
Reverse azimuth

Forward eleéevation .

Reverse elevation
Slant range

0 00 00,0000
0 00 00.0000
90 00 00,0000
0 00 00,0000 .

0.000000000
180.000000000
- 45.097283309
=~ 44.902716691
9:0.04 0869-.488 m

0 00 00,0000
0 00 00,0000
90. 00 00,0000
0 00 00,0000
0.000000000
180.000000000
- 45.097283309
- 44.,902716691
9,004,869.488 m

The above results show agreement.to at least nine decimal places in angle and

at least three decimal places in range (the accuracy limit of the desk computer
system). It should be noted that the program results are all based on ¢losed-~
form solutions whose accuracies. are affected only by the precision limit. of the

computational eéequipment,

4-19




_ Program to6 Calculate Spheroid Forward and Reverse Azimuth
. and Spheroid Distance

To determine the course and distance between two points A and B, o pilot draws
a straight line between the two points on a Lambert conformal aeronautical.
chart., Neglecting the effects. of wind, the magnetic heading to be flown from A
to B is simply the true course (measured as the angle between the course line
. and the meridian passing through the starting point A) plus or minus the
¢ magnetic variation (plus for west variation and minus for east variation),. In
flight, as the airplane proceeds along this path, the magnetic heading must be
| slowly adjusted because the angle between the course line and each succeeding
. meridian en route is slightly different due to meridian convergence.. If. the
earth were a true sphere¢, the path taken between the two points would be the arc
i of .a great circle representing the shortest distance between the two points.
In the real world, because of the flattening of the spheroid, the Lambert
course does not represent the shortést distance between the two points.,
However, because the flattening is very slight, the difference in distance
between the geodesic and the Lambert course is also very slight for normal .
flight legs, even those of reasonably long distance_ (1000 to 2000 nautical

miles).

Subréutine Lx in the baseline program is used to compute the Lambert forward

and reverse azimuth angles and the spheroid distance between any two chart 1
points. In this.subroutine the geodetic coordinates (latitude and longitude)

of two map points are entered, The program then computes the forward and .

reverse azimuth angles using the Lambert conformal transformation, which is

mathematically constrained. to preserve angle measurements. .

Distancé calculations made on a. Lambert map obviously require some adjustment ;
since the scale is true only on the two standard parallels. A method has been !
devised to. obtain accurate distance measurements by computing a correction ‘
factor that can be appliéd to the Lambert hypotenuse {(which represents the |
length of the projection of an on-spheroid line .drawn between the two points).

This method is used in subroutine Lx. First, to reduce initial scale error, i
the north and south standard parallels used in the . transformation are selected

so as to pass directly through the two points between which the measurements j
are to be made.. Next, to correct for scale error due to magnification between. ;
the two standard parallels, the program-computes the Lambert distance between x
the northern and southern parallels and compares this distance with the spheroid ‘
distance between the two parallels as computed from the meridioénal arc. :
algorithm used in the Mercator subprogram, The ratio of these two distances

provides & factor that is used to correct the Lambert distance measurement, 1
Results of the .on-spheroid distance computations have been verified to be well .
within 1 meter of accuracy for distances up to 1000 nautical miles or more.

MEYEE 8

Variable Names

Name . Deséription
Aa Length of semimajor axis of reference spheroid
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Azl
Az2 .
Azflg
Bb. ..
Dlon
E2

Ee
Factor

L11

Li2

Latl
Lat2

Lm

Lonl
Lon2
Lx
Ly

Lyc¢heck

Nlat.
Olat
Olon
Rng.

Slat

Forward spheroid azimuth in degrees

Reverse spheroid azimuth in degrees

Flag indicating azimuth value as indeterminant
Length of semiminor axis of reference spheroid .
Difference in longitude between point 1 and point..2
Square. of ellipticity value for referemnce spheroid
Ellipticity value for reference spheroid.

Factor used to correct Lambert distance computation

Transfer variable used to send latitude of north
standard parallel to meridional arc subroutine

Transfer variable uséd to send longitude of south
standard parallel to meridional arc subroutine.
and to return computed arc length

Latitude of poiat 1 in degrees

Latitude of point 2 in degrees

Flag sent to subprogram Mercator to indicate that
only meridional arc.computation is to be performed

Longitude of point 1 in degrees
Longitude of point 2 in deéegrees

Lambert X value returned from Lamxy subroutine

Lambert .Y value returned from Lamxy subroutine . ... ..

Check value used in. the development of the Lambert
correction factor —

Latitude of north standard parallel in degrees
Latitude of Lambert origin .point_(point 1) in degrees.
Longitude of Lambert origin point (point 2) in degrees
Lambert distance computed in Xyzrae subroutine
Latitude of _south standard parallel in degrees

Lambert X

4-21
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Y . Lambert Y
Zlat - Target latitude (point.2) in degreds.
Zlon Target longitude (point.2) in dogrees

Computational Algorithms .

Gzentry subroutine. This subnoutine‘allows‘thevopgrator to enter geodetic .
coordinates of the first and second.spheroid points, The same subroutine
is used to enter data for the angle and slant fange program previously
described.. When used for entry of on-spheroid points,. a mode flag causes.
the requests for sca=~level elevation and geoid separation to be_bypassed.

Lz subroutine: The Lz.subroutine~computes the spheroid distance and the
Lambert . forward and reverse azimuth angles between point 1 and point 2,

Certain housekeeping functions and simple degree conversion calls are
omitted,

The Qsel subroutine (step 2) is entered only on initial entry inte the Lz
subroutine and allows the operator .to select. the output device (CRT,
thermal printer, or line printer). Gzentry is.called at step 3 to accept

the latitudes and longitudes of points 1 and 2, after which the main
computations are performed, .

The Lz subroutine uses. the generalized Lambert algorithms to compute forward
and reverse spheroid azimuth angles and Lambert distances. It is important
to recall that for this calculation, Lambert Parameters are selected such
that the north standard parallel passes through the northernmost point and
the southern standard parallel passes through the southernmost point. To

in point is assigned the coordinates

in order to first compute the
forward azimuth from point 1 to point 2. A check is made at step 8 to

getermine whether both points lie at the same latitude. In such case,. the
transformation reduces to that of a single standard parallel passing
through both. points, Since, when .this happens, the course runs very near
the standard parallel where the distance is true, it suffices to simply set.
ional arc calculations which
determine the true arc distance between the standard parallels., If the two..
points are .not at the same latitude, flag Lm is set to.1 and the Mercator
subprogram is called. Flag Lm causes the program to bypass all but the
meridional arc calculations in the Mercator. subprogram, thus eliminating
the need for a separate meridional arc. subroutine. In the calling argument
(step 10), the dummy variables L11 and L12 pass_the latitude values of
point 1 and point 2_to the Mercator subprogram. The meridional arc length
between north-south points whose latitudes afte the same as those .of points
1 and 2 but whose longitudes are zero is then computed. The ar¢ length
obtained represents the separation of the parallels passing through points
1 and 2, and it is returned as dummy variable L12, Parameter Ycheck is
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then set equal to the absolute value. of the distance separation between the
standard parallels . passing through the two points (step 12).

Steps 15 to 18 are used to recognize the indeterminant.gituatién whgre.both
points lie at the pole. In. such case¢, range is set to 0 and Azflg is set .. .
to 1. to cause the word INDETERMINANT to print out for the azimuth value. ...
Step 19 recognizes.the condition where 1 point lies at the.pole and the
other lies at any point. on the .spheroid. In this. case. one azimuth angle. is .
always O degrees and the other is always 180-degrees. The logic in steps
20. to 24 .determines which of. the two azimuth values is O and which is 180
degrees. In this case, it is also obvious that the spheroid distance.
between the two points is exactly the same.as the meridional arc distance,
and Rng is set equal to the absolute value returned from the meridional_arc
calculation (steps 12 and 25).

Next, the.Lamb subroutine is called. This subroutine causes the program to.
enter the Lambert routines previously described.. These routines initialize
using the point 1 latitude as the north standard parallel, the point 2 .
latitude as the south standard parallel, the coordinates of point 1 as the
origin, and the coordinates of point 2 as the target. Lamb returns values
Lx and Ly.‘representing_the.Lambert coordinates of point 2 with point 1. as .
the. origin, The.values of the two pOsition_coordinates of point 2 with
respect to point 1 are stored as X and Y. _

In step 30, the difference in longitude between the two points is set to 0-
(Dlon=0), and Lamxy is called. This bypasses the Lambert initialization
routines which are calculated when Lamb is called, but using the.same .
initialization parameters. computes the Lambert distance between two
comeridional points lying on each of the two standard parallels. This
value is stored as Lycheck at .step 32. At step 35, a factor is developed
which represents the ratio of. the true meridional arc distance between the
two. parallels containing points. 1 and 2, and the Lambert distance between
the same two parallels, Sirce the Lambert value obtained by this procedure
represents the length of the Lambert projection of a meridional arc between
the two parallels, the same. scale factor correction should be reasomably
accurate for-correcting the. total distance. between two non-comeridional
points lying on the same two parallels.

At step 36, Subroutine. Xyzrae is called to compute the Lambert.distance.
between the two points, Since. only X and Y have been assigned values .
(steps 28 and 29), the .subroutine returns only Az (azimuth) and Rng
(range). In a Lambert transformation, angles are preserved. This insures
that the correct azimuth is obtained. Rng,. in this case, is the Lambert
hypotenuse between the two points. The value of the forward azimuth is
stored as Azl (step 37). ...

To find the reverse on-spheroid azimuth, the point 1 coordinates are
assigned as target coordinates Zlat and Zlon, and the point 2 coordinates
are assigned as the origin coordinates Olat and Olon (steps 38 to 43).
Subroutine Laml is again ¢alled to initialize the Lambert transformation
using the same. two standard parallels, but with point 2 now serving as the
origin point, The returned Lambert X and Y values are again resolved into
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; polar form.in subroutine Xyzrae which returns the value of the reverse
3 (point 2 to point 1) azimuth, This valuc is stored as_Az2 in step 48,
B
? Finally, at step_49, the Lamhert distance between the two points (Rng). is .
: corrected by tho value of Factor (Rng=Rng%Factor) to obtain the approximate.....
: spheroid distanoce between the two péints.,  After the range adjustment, the
- program calls the printout subroutine Gzprint, which displays or prints the
: results,
k.
P The program sequence used to accomplish these calculations is:
k 1. La:!
' 2, .. GOSUB. Osel
- \ 3...GOSUB Gzentry
4. L11=0lat=Latl
§. Olon=Lonl
6., Ll2=Zlat=Lat2
T.- Zlon=Loén2
8. IF-Olat=Zlat THEN 13
9. —Lm=1
10, . CALL MercatOr(AaLBh.Ee,E2,Ucnv,Lll,LlZ)
11, Lm=0

12, Ycheck=ABS(L12)

13. . Nlat=MAX(Olat,Zlat)

14, .Slat=MIN(01at,Zlat)

15.. IF (Nlat=90) AND (Slat=90). THEN .Azf1g=1

16. IF (Nlat=90) AND (Slat=90) THEN .Rng=Q

17. 1IF-(Nlat=90) AND (S1at=90) THEN GOTO Gzprint

18. IF (Lat1=90) OR (Lat2=90) THEN 21 . ;
19. ¢GoT0. 27

20. Azl=Az1r=0 ;
21,  Az2=180. )
22. IF Lat2=90 THEN 26...... ;
23, Az1=180
24, HA22=AzZr=O i
25. Y=Rng=Ycheck 1
26. GOTO Gzprint .

27, GOSUB Laml
28, XslLx.

29, Y=Ly
30. Dlon=0 ;
31.. GOSUB Lamxy

32, Lycheck=Ly

33 IF Ly>1000 THEN 36

34,  IF FRACT(Lycheck*1000)=0 THEN Ycheck=Ly e
3s. <Factot=YcheCk/Lycheck, -
36. GOSUB Xyzrae !
37. Azl=Az 1

38, Lat=0lat

39, Lon=0lon |
40, . Olat=Z1at |
41, Olon=Zlon '
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42, Zlat=Lat
: 43, Zlon=Lon
| 44, GOSUR Lami
| 45 . X"’LX
46, YaLy
47, GOSUB Xyzrac
) - 48, Azl=pz
49, . Rng=Rng%Fact oy
) S0. GOTO-Gzprint

C.. Subroutine Laml: Subroutine Laml performs the Lambert initialization based
on the values. for the north and south standard parallels (Nlat and Slat)
and the. valuos of the origin latitude and longitude (Olat and Olon)., After
the initialization the program .proceeds into Lamxy which computes the
Lambert X and Y values for the points previously entered by the operator..

A complete description of the..Lambert routines is provided in chapter 2 of
this document, -

D. Subroutine Lamxy: Subroutine Lamxy computes. the Lambert X and Y
coordinates (Lx and Ly) using the initialization values frum subroutine
Laml and the target’s geodetic coordinates (Zlat.and Zlon), Subroutine
Lamxy is fully described in chapter 2 of this document,

E. Subroutine Xyzrae: Subroutine Xyzrae converts local east, north, and
vertical Cartesian cbordinates into.spherical range, azimuth, and elevation
form, For .on~spheroid calculations, the elevation coniputations are not

used. Subroutine Xyzrae is given earlier in this chapter (Subroutines
Common to Range and Angle Programs).

Program Operation

master menu selection is displayed. One

« The operator
selects the .appropriate numeric¢al entry and the main program enters the

spheroid. angle and. distance subroutines,

After entry into .the su
simple entries:

A, Output device selection,. which is displayed as:
SELECT OUTPUT DEVICE
= CRT

0
1 = THERMAL PRINTER.
2 = LINE PRINTER

4=25
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B. Parameter entries, which are displayed sctquentially as:
ENTER GEODETIC LATITUDE OF POINT.1 IN. D,MS
ENTER GEODETIC LONGITUDE OE. POINT 1 IN D, M§
ENTER GEODETIC LATITUDE OF PQINT 2 IN.D,MS
ENTER GEODETIC LONGITUDE. OF POINT 1 IN D,MS

The program then enters.its computational mode and, when completed, displays
the.followingi

POINT 1 GEODETIC LATITUDE
POINT 1 GEODETIC LONGITUDE

[}

i

35 00 00,0000 ¢ 35.000000000) (.0.610865238)
118 00.00,0000 (118.000000000) (12.059488517)

POINT 2 GEODETIC. LATITUDE
POINT 2 GEODETIC LONG ITUDE

I}

36 00 00.0000 ¢ 36.000000000) ¢ 0.628318531)
119 00 00.0000 (119.000000000) ( 2.076941810)

FORWARD AZIMUTH (1 T0.2)

321. 00 51.9530. (321.014431394) .602758774)
REVERSE AZIMUTH (2 T0 1)

(5
140 26 01,3948 (140.433720789) (2.451030809)

o

SPHEROID DISTANCE 143320,67 METERS

In this display, angles are first shown in degree, minute, second, and decima]
second format, followed by the-same value in degrees and in radians, Distance
units are as selected by the Operator upon initial entry into GEOD,

h and di
measurements that would be obtained by a pilot or flight planner when he d;
a.straight course line between two points on a LambertAconfOrmal chart,. On a
Lambert conformal c¢hart, the angles provide vhat woul
if the earth were perfectly round. Because the earth is ga spheroid and not a
Sphere, the chart course approximates g great .circle path, :

Validation of the program is first accomplished by computing angles and

distances between g selected origin and a@.pattern of points Surrounding the
origin, The points.are keptvSufficiently
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CHAPTER §

DETERMINATION OF. GEODETIC COORDINATES FOR OFF-SPHEROID POINTS

This chapter dé¢scribes four methods for the determining the geodetic latitude,
longitude, and altitude of a target from known.univérsal space rectangular
c¢oordinates, These¢ methods are:

1, the Lagrange (Hedgley) closed-form method
2. the. Purcell and Cowan approximation method
3., the Bowring approximation method .
4, the GMD (James) closed=form method

The Lagrange multiplier method is a closed-form solution which provides results
whose accuracies are valid to the precision limit of the computational system.
While in theory a closed—form solutiorn should be best for use in a baseline
system, the solution réquires finding the roots of a quartic equation, and,
with normal computational systems, this degrades the accuracy because of the
need to work with fourth—order terms. The algorithms used for sélving the
quartic equation are time consuming, but the solution concept is
straightforward and easily implemented.

The Purcell and Cowan approximation method offers sufficient speed for real-
time applications.,. It is not_quite as accurate.in the latitude determination
as. the other solution methods, but the altitude calculations are extremely
accurate.,. For real-time programs, theé Purc¢ell and Cowan approximation usually
achieves results that are-as good as or better than the least-signifi¢ent-bit
precision of the tracking systems,

The Bowring approximation method also has sufficient speéd for real-time
applications, In the Bowring method a rough approximation of altitude is
computed and then refined., Even if the first approximation is in error by a
significant amount, the.equations will still return a surprisingly accurate
solution, Generally, a one-pass solution provides sufficient accuracy for most
tracking applications, However, the Bowring method has the advantage that, by
using the output of one soiution as input for a succeeding pass, the errors can
be reduced to any specified limit in reasonable computational time.

The GMD method was developed during an attempt to find & closed=form solution .
with speed comparable to that of the approximation methods. The technique is
straightforward and dué¢s not suffer. from sifigularities that are sometimes.
present. in other solutions, Unlike the Lagrangé method, which solves a quartic
équation for the value of the Lagrange multiplier, the GMD solution solves
directly for. the ¢oordinates of thé target point., Unfortunately, the méthod
also requires a quartic solutiou, which is time. ¢onsuming. At altitudes under
1,000,000 meters, accurasies are approximately the same as for the Lagrange
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E solution, However, at very high altitudes (up to 1,000,000,000 meters), the
- GMD solution seems to yield .lightly better accuracies. .

3 A comparison of computational time réquirements for the four methods. shows the

", Purcell and Cowan solution to be the fastest with the Bowring method taking

about twice as long, the GMD method taking about three times as long,_and the . ’
Lagrange method taking about four times &8s 1ONG. . . . ..

)

2!

"

h The Lagrangeé Multiplier Method

L The application of the Lagrange multiplier .method to the conversion of

' universal space rectangular coordinates to geodetic. values was proposed by

D. R, Hedgley, Jr. (ref. 5). Theo.uniqueness of the Hedgley method lies in the .
fact that the solution yields the coordinates of the surface. point for which
the square-of the surface—-to~target distance is at a minimum value. By
minimizing the square of the distance instead of the distance. itself, a
variables separable condition exists which permits.a direct application of the
Lagrange solution. .

Po(xys yo, 2g)

P(x, vy, 2)

sk dadas . .

Figure 5.1,

Consider. a target situated at a point P, that lies off the.earth spheroid, as
shown in figure §S.1. Let P.be .any point on the surface of the spheroid and let
P, be the spheroid point whose normal line passes directly through the target
point, Using universal space rectangular._coordinates, the distance h between

the surface point and the target point is given by (1
h = [(E, - E)2 + (F, = F)? + (6, - G)3]1/ (5.1) “
and
t
§-2
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hd = (E, -~ E)3 + (Fy - F)3 4 (G = Q)% . (5.2)

N Obviously, the-values of both h and h? reach minimums.when E'= Ey, I = F,, and
3 G = @G,, and it will suffice to minimize h? instead of h if this will simplify
the computations, This simplification becomes apparent when the partial
derivatives of h? are taken with respect to E, F, and G, yielding

" 3h3

» , A Lp - N
- = 2(E, =B, W eap - B, e & =206, - 6 (5.3)

where the partial of h2-with respect-to E is a function of E alone, the
partial o6f h? with respect to F is a function of F aloné¢, and the partial of
L2 with respect to G is a function of G alone.

The efuation for the spheroid in universal space rectangular coordinates is

2 12 2
%; + E; +_%; =-1 o (5.4)

which, by rearranging terms,_can be written in.a zero form as

EX, F*, @ _, . |
Tttty - 1= 0. (5.5) !

Since equation (5.5) is equal to 0, it will rot change-the value of equation . . . . . . ‘
(5.2) if it is rewritten as r

E? (E2 G2 1]. (5.6)

He = (B, - E)? + (F, - F)? + (6, - G2 - ofBp + T2 o &

In équation (5.6), the value of h2, a function of E, F, and G, has been... ... ..
replaced by H?, a function of E, F, G, and a, where.o is known as the

Lagrange multiplier. The added right-hand members of equation (5.6) arc .
nothing more than equation (5.5) multiplied by a. Since equation (5.5) is
equal. to 0, the product of a and equation (5.5) must also be equal to O.
Therefore, H? is numerically equal to h? for all values of E, F, G, and «a. ]

To obtain the maxima and minima of H?, the four partial derivatives are set
edqual to zerc.

aHz _ _wy _ 20E _ -

F - 2(1;o E) a? 0 (5:7)
dH2 - ) 2aF” ‘
—— - F) -~ =0 )
s = 2(Fg - F) -5 =0 (5.8)

&
on3 , 206G _ ;
3G = 2(Gy - G) - 2z = 0 (5.9) “ww-41
gn? _ _E* F2 _ G2 = ¢ ~
o’ STt 1=0 (5.10)
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The means by which the Lagrange multiplier method yields constrained maxima and
minima. is readily apparent from ¢quations (5.7) to (5.10), When the partial
dérivatives of I* with respect to each of the three coordinate variables E,

F, eand G are set oqual ts 0, the values obtained will be those for zero-slape .
points, either maxima or minima, At the same time,. the derivative .of H? with
respect to the Lagrange multiplier a yields nothing less than.the zero=form
cquation for.the spheroid, Because_of. this, the only values of E, F, and G for
which equations (5.7) to (5.10) can possibly be satisfied are those for the set
of coordinate points lying on the surface ¢f the Spheroid,

By intuition one can deduce that there are only two points at which the maximum .

or minimum distance.between the surface of a spheroid and an of f-spheroid point
will o¢cur. One is the surface point whose outward normal passes through the
target point, The other is the surface..point that is most distant from the
target. point, However, because .h2, and. not h, was used in the application of
the Lagrange multiplier method, two additional points are ‘introduced, both of
which are imaginary. Thus, to determine.the surface geodetic ¢oordinates of the

target, it is necessary to find the real values for E, F, and G for which h or
h? is minimized (eq. (5.1) or (5.2)).

This is accomplished by solving equations (5.7) to (5.9) for E, F, and G, -

respectively. The values obtained are then substituted into equation (5,10),
vielding .

(Ey)3 (Fg)2 - (Gy)2 .
- a T 2 s t1 =0, (5.11)....
a’(l + f%) az(l + j%) b?(l + f%)

Equation (5.11) may be re¢arranged into

at + (2a% +.2b%)a? + (a4 + b4 - E3a® ~ Fa® - GIb2 + 4a2b2)qs
*+-(2a%b4 + 2a4b2 - 2EZ3a2b? - 2F2aib2 - 262a?b2)a
* (a%b¢ - E2a%b4 - FZa?b4 - GZa4b2) = 0 (5.12)

which is in the form of a quartic equation
Aa* + Ba® + Ca? + Da + E = 0, (5.13)

In the baseline program, the quartic equation is solved by the method of
Descartes, which is provided in detail in the appendix, :

Of the two real. roots obtained by the -quartic root solution, the one that
yields values of E, F, and G which minimize‘the value of h in equation (5.2
will be the proper root, and the values of E, F, and G thus obtained will be

the univecSalvspace.rectangular coordinates of the surface point directly
beneath the target,

To sbtain the geodetic coordinates. of the point, it is first nec¢essary to

coavert the E-F=G coordinates into gencentric spherical coordinatés and thénce
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into geodetic coordinates, The geocentric coordinates of thé point can be
obtained from R

R = (E* + F3 + G2)1/2 e (5.14)
and..... .

(E2 + F3)2A.
Rl

& = arccos
where R, is the length of the geocentric position vector from the crigin to
the point P,, and §, is the geocentric latitude of the point P,,

Using equation (1.8), geocentric latitude ¢, may be converted to geodetic
latitude p, by the relation

p, = arctan [tan &,/(1 - &2)], . (5.16)

The geodetic longitude is obviously _the.same as the geccentric longitude of the
target point and can be found from

A = arctan (F,/E,) = arctan _(F,/E,). (5.17)

Knowing the geodetic latitude and longitude of the surface point as well as .
the target E,, F,, and G, coordinates, the value of h can be obtained from

Eq a
h = cos j, sin A T a- edsin2p,)1/2 * (5.18)
F, a
h = cos p, sin (1 - g2sin2p,)3/3 (5.19)
or
Gq- a(l ~ g32) »
h = sin px - (1 - ezsinzpl)j_/z . (5.20)

Equations (5.18) to (5.20) are used instead of equation (5.1) to obtsin the
final value for h because a solution with equation (5.1) would involve finding.
the square root of . a very large term which would reduce the accuracy of the .
result,

(5.15) .
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Name
A .
A2b2
A2b4
A4b2
Aa
Alpha
Alt
An

B2

B4 .

Bb

Bn
Coslat
El

E2n
En
F1 .
F2n

Fn

G1

G2n
Geoidsep
Geoséep

Gn

Variable Names

Dascription. .
a? term in equation (5.12)
a2b? term in equation (5.12)
a2b4 term in equation (5.12)
a4b? term in._equation (5.12)
Length of semimajor axis of reference spheroid
Lagrange multiplier
Altitude of target_above sea..level
-Normalized length of semimajor axis (An = 1)
b? term in equation (5.12)
b4 term in equation (5,12)
Length of semiminor.axis of .reference spheroid
Normalized length of semiminor axis (Bb/Aa)
Cosine of target geodetic latitude
E coordinate in input units
En2
Normalized E coordinate
F coordinate in input units
Fn2 .
Normalized F coordinate
G .coordinate in input units
Gn2.
Separation of geoid in meters ..
Sepatation of geoid. in selected. units

Normalizéd G coordinate

5<6
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Lat Geodetic latitude of target on spheroid

Lon ... Longitude of target on.spheroid. ___ _

Sinlat . Sine of target geodetic latitude -
Sin2lat Sinlat3.

Terma : Multiplier of fourth-power térm in equation (5.,12)
Termb. . Multiplier of third-power term in equation (5,12)
Terme .. Multiplier of second-power term in équation (5.12)
Termcl Constant portion of .Terme

Termc2 Variable portion of Termc.

Termd. .. Multiplier of first-power term in equation (5.12)
Termdl Constant portion of Termd

Termd2 Variable portion of Termd

Terme Last bracketed.term in equation (5.12)

Termel Constant portion of Terme.

Terme2 Variable portion of Terme

Ucnv Conversion factor for selected units

Computational Algorithms

The essential algorithms used. for the Lagrange multiplier determinatio
geodetic latitude, longitude, and altitude from known universal space
rectangular coordinates are as follows:..

A,

Lagrange subroutine: The Lagrange subroutine computes the Lagrang

a of

e terms

needed by the quartic solution subprogram and, upon receipt of the real.

roots from the quartic solution, computes geodetic latitude, loagitude, and

altitude.

Upon initial entry into the Lagrange subroutine, the program calls
subroutine Osél (step 2) which allows the opérator to select the o
device to be used throughout..the c¢omputations. The program then ¢

utput
alls

subroutine Efgentry (step 6) to permit the operator to enter thée E~-F-G

coordinates of the target point. These coordinates are entered in
units selected by the operator at program initialization, The inp
coordinates are assigned simple. variable names of . E1, F1 and G1,

7 to 9 the program normalizes each of the input coordinates throug
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division by the appropriate metric conversion value (Ucnv) and the length
of the. semimajor axis (Aa)., In steps 12 to 17 the program forms the .
multipliers of the power terms in._equations (5.12) and (5,13), Note that
Terma. through Terme correspond to the. parameters / through E in cquation ..
(5.13), At step 18 the program calls subroutiune Quartic which implements
the Descartes technique to solve for the roots of a generalized quartic .
equation, A full description of subroutine Quartic is provided in the.
appendix, When Quartic is called from subroutine Lagrange,. a mode flag
causes the subroutine logic to test for the root that provides the minimum

value for h. The selected root is stored as simple variable Alpha. Steps .

20 through 22 implemént equations (5.7) through (5.9), which have been
rearranged to solve for the parameters E, F, and G respectively., Note that
the computed coordinates aré restored from normalized to engineering unit
values in the same steps. At step 18, the Efgtolat subroutine is called to
compute the surface. point latitude coordinate from. the values of E, F, and
G. At step 24, the longitude of the surface point (which is identical to
the longitude of the target point) is computed by simple trigonometry. In
step 29, the computed latitude and longitude values. of the surface. point
are used to determine the correct value for h (Alt), Step 29 is a direct
implementation_of equation (5.18).

1. Lagrange:!

2, ..GOSUB Osel

3. PRINT PAGE

4, GOSUB Lagrangeterm

§5,. Lagrangel:!l.

6. GOSUB Efgentry _

7. . En=E1/Uénv/Aa

8. Fn=F1/Ucnv/Aa

9, Gn=G1/Ucnv/Aa

10. F2n=En*En -

11, . F2n=Fn*Fn

12. Termc2=A2n*(E2n+F2n)+B2n*G2n
13, Termd2=2%A2b2*(E2n+F2n+G2n)
14, Terme2=A2b4%*(E2n+F2n)+A4b2%G2n
15.. Termc=Termcl-Termc2..

16. Termd=Termd1-Termd2.

17. Terme=Termel-Terme2

18, .GOSUB Quartic.

19, Cooérdinates:!

20.. E=En®*Aa/(1+Alph)

21, F=Fn*As/{(1+Al>h)

22.. G=Gn*Aa/(1+Alph/B2n)

23. GOSUB Efgtolat

24, Lon=180-ATN(Fn/En)

25, Sinlat=SIN(Lat)

26, Sin2lat~Sinlat*Sinlat N
27.. Coslat=COS(Lat)

28, Coslon=00S(Lon)

29, Alt=En®Aa/(Coslat®Coslon)=Aa/SQR(1-E2*Sin21at)
30. .GOSUB Coordprint

31, GOTO Lagrangél
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Lagrangetorm subroutine: . The Lagrangeterm .subroutine .computes._the
spheroid/datum dependent terms A through E in quartic equation (5.13).
These terms remain the same for all solutions using the same¢ spheroid/datum
reference, and therefore, the calculations are made only upon initial entry
into the Lagrange subroutine, Note that spheroid length paramcters (a and.
b) are normalized to prevent a real precision overflow that would otherwise
occur in the fourth—-power terms.

1. . An=2A2n=Adn=1
2. Bn=Bb/Aa
3, B2n=Bn*Bn
4. --B4n=B2n*B2n
5...A2b2=RB2n .
6. A4b2=B2n
7. .A2b4=B4n
8. Terma=1

9., Termb=2%(A2n+B2n)
10, Termcl=Ad4n+B4n+4%A2b2
11,  Termd1=2%{A2b4+A4b2)
12, Termel=A4n*B4n ..

FEfgentry subroutine: The Efgentry subroutine is used to receive operator
inputs of the E, F, and G.coordinates of the target point. Entries are
made in units selected. by the operator at program initialization and stored
as E1, F1, and G1,

Quartic subroutine: The Quartic subroutine is.a generalized subroutine
that will find the.roots of any quartic equation. JTnput to the subroutine.
are the values for A, B, C, D, and E as indicated in equation (5.13). 1Ia
the Lagrange program, these terms are labeled as Terma, Termb, Termc,
Termd, and Terme. When the entry to Quartic is made from the Lagrange

program, the two real roots are tested to select the one which provides the.

minimuw value for h (Alt). This root is stored as simple variable Alpha.
for subsequent use in the Lagrange subroutine., A full description of
subroutine Quartic i< provided in the appendix, .

Efgtolat subroutinc: The Efgtolat subroutine. is a generalized algorithm
that converts E-F-G coordinate values into geodetic latitude. At step 1
the value of E? + F3 is computed. In step 2 the length of. the .
geocentric radius vector Rl is computed as the.square root of

E3 + F3 + G2, Geocentric latitude (Latgeocen) is computed at step 3
through simple trigonometry. In step 4, this value is converted to
geodetic forw by a direct implementation of equation (1.8).

1. . Eterml1s=ESE+FsF

2.. R1=SQR(Eterm+G*G)

3.. Latgeocen=ACS(SQR(Eterml) /R1)
4, Lat=ATN(TAN(Latgzocen)/(1-E2)
5. RETURN
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Program Operation

The Lagrange multiplier solution is a subrowtine of GEOD. When GEOD is runm,
the operator is asked to select the input/output units and spheroid/datum
reference to be used in. the computations,. The program then.enters the Lagrange
subroutine, requests the.output selections, and initializes all the
spheroid/datum,depgndent terms of the quartic equation, After the
initialization har_been completed, the program prompts the operator .to make the
following entries..

A, Parameter entries. Parameter entries are sequentially displayed as:
ENTER GEOCENTRIC E VALUE IN (selected units) . R

ENTER GEOCENTRIC F VALUE IN (selected units)

ENTER GEOCENTRIC.G VALUE IN (selected units)

ENTER GEQID SEPARATION IN (selected units)

The program then foérms the quartic equation and enters subroutine Quartic .

which returns the proper root of the quartic equation from which the
geocentric.cootdinatcs of the surface point may be determined. The
geocentric coordinates are converted to. geodetic coordinates, and the
altitude of the target above sea level is computed.

B. Program output. The entered values and computed values are displayed as:
DATUM: NORTH AMERICAN_ (NAD) EARTH _MODEL: CLARKE
2459439 .14 METERS.

~-4625532.17 METERS
. 3643414,76 METERS

GEOCENTRIC 'E’ COORDINATE
GEOCENTRIC,’F‘ COORDINATE
GEOCENTRIC 'G' COORDINATE

nown

35 00 00.0000  (35.00000000) (0.610865237)

118 00 00.0000 (118.00000000) (2.059488518)
.10000,00 METERS.
10023.50 METERS

GEODETIC LATITUDE
GEODETIC LONGITUDE.
SPHEROID ELEVATION
GEOID ELEVATION'

powonn

The latitude and longitude are given in.degrees, minutes, seconds, and decimal
seconds, followed by the same values in degrees and radians. The output units
(METERS shown) are those selected by the operator for input and output.

Program Validation

The Lagrange multiplier solutions provide coordinate and altitude information
for off-spheroid targets.. While the calculation of the universal space
rectangular coordinates for any of f~spheroid target point is mathematically
simple, the revesse calculation is considerably more difficult.. Because. the

forward calc¢ulations involve only simple trigonometric relationships, extremely

accurate E-F=G coordinates can té obtained for any of f=spheroid target point.

5-10




These. values can then be used in the reverse solution, which employs &
complotely different mathematical concept. If the valuos returned from the
reverse. solution match the starting wvalues used in the forward solution, then a
successful validation.is obtained. .

For the validation cases shown in table 5.1, target altitudes of O, 1000,
10,000, 100,000, 1,000,000, and 10,000,000 meters. were used, 35 00 00,0000 N -
and 118 00 00.0000 W were used as the gecdetic coordinutes of the test point.,
As shown in the table, the reverse calculations returned position coordinates
that. were always within .one-half centimeter of the starting point until the
altitude exceeded 1,000,000 meters.. Above this altitude the precision of the.
12-digit computational system begins .to 1imit the accuracy that can be
attained. However, it is important to remember that the Lagrange method yields
a closed-form solution whose accuracy is limited only by the precision of the
computational system.

zs;
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TABLE 5,1, .LAGRANGE SOLUTION VALIDATIONS

:\%

:

i Parameter Actual value Computed value

X o

g For B = ~2455593.45 m, F = -4618299.59 m, and G = 3637679.00 m

N

b

3 Geodetic latitude 35 00 00,0000 34 59 59,9999

! Longitude . 118 00 00,0000. 118 00 00,0000

. Altitude 0.00.m 0.00 m..

g .

i For E = -2455978.02 m, F = -4619022,86 m, and G = 3638252.58 m

l Geodetic latitude 35 00 00.0000 35 .00 00,0001..
Longitude 118 00 00.0000 118 00 00,0000
Altitude ... 1000.00 m . 1000.00 m

)

i For E = -2459439,14 m, F = -4625532.27 m, and G = 3643414.76 m
Geodetic latitude. 35 00 00.0000. 34 .59 59,9998

l' Longitude 118.00 00,0000 118 00 00,0002
Altitude. 10000.00 m 10000,00 m

)
For E = -2494050.31 m, F-= -4€90626.42 m, and G = 3695036.64 m
Geodetic latitude 35 00 00.0000. 35 00.00,0000
Longitude . 118 00 00,0000 118 00 00,0001 .
Altitude 100000,00 m . 100000,00 m
For E = ~2840162.04 m, F = -5341567.92 m, and G = 4211255.44 m
Geodetic latitude . 35 00 00.0000 34 59 59,9999
Longitude . 118 00 00,0000. 117. 59 59.9999 .
Altitude . 1000000.00 m 1000000,00 m.
For E = ~6301279.35.m, F = -11850982.85 m, and G = 9373443 .36 n

Geodetic latitude
Longitude
Altitude

35 00 00,0000

118 00 00,0000
10000060,00 m

35 00 00,0005
117 59 59.9999.
10000000.03 m

5-12
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The Purcell and Cowan Approximation Method

The method of Purcell and Cowan calculates geodetic latitude and longitude .from
universal space roctangular.coordinates by the use of numerous small angle
approximations that enhance computational speed but still retain a réasonable
dogree of computational..accéuracy. .

Figure 5.2 ropresents the first quadrant of a meridian ellipse¢ from an oblate
earth of eccentricity, e. The position of the target is dendted by the point .
P, which is at an altitude h above the surface of the reference spheroid..

The target's geodetic latitude is denoted by u, its geocentric latitude is
denoted by u,, and the geocentric latitude of the surface point whose outward
normal passes through the target is denoted by u,. The magnitude of the
geocentric position vector of the target is denoted by R, the geocéntric¢
radius of the spheroid at the point T is denoted by R,, the geocentric radius
of the spheroid at the point Q is denoted by R,, and the geodetic radius at
the surface normal point is denoted by N, The symbol & denotes the lemngth of
the semimajor axis of the spheroid, b denotes the length of the semiminor

axis of the spheroid, d denotes the distanc¢e along the X axis from the origin
to the intersection of the. normal line, and ¢ denotes the distance measured
along the normal line from the point of intersection with the X axis to its
intersection with the surface of the spheroid. The difference betweeén geo-
detic and geocentric luatitude is denoted by a at the point.Q, by a, at the
point T, and by B at the point P,

Neference
spheroid

Cecocentric
céntexr of
reference

spheroid—\\ig"

Bast—-west.
centéer of.
curvature

for point Q@

\

Figure 5.2,

5-13




It has been shown that. the relation.

between geodetic¢ and geocentric latitude
for on-spheroid points is given by

tan p, = (1 - g2)tan ., . (5,23 ..

Using double-angle trigonometric relations, it is possible to write

tan y.=- tan.y,
"1+ tan B otan p, (5.22)

tan(u ~ p,)

in which the tan u, terms ¢an be eliminated by the use of equation (5.21) and

@ can be sutstituted for R = M. Applying familiar trigonometric identities,
equation (5.22) can then be reduced to

e? - sin p cos p
1 - 82 sinzu » (5023)

tan o =

or

€2 - sin § cos p

ST (5.24)

a ¥ arctan

A similar solution for a may be obtained in terms of H, by eliminating the
tan p terms in equation (5.22) in the sam¢ manner as used above .to eliminate
the tan p, terms. This yields

e? ~ sin pu, cos H,

¢ = arc¢tan —= 1 - ¢ sinip " (5.25)

The difference between geodetic and geocentric latitude

at point T may be
determined by the same me thod and may bé expressed as

€? - sin Ky €0s uy

@, = arctan —— (5.26) .

1 - €2 sin2y :

Again considering the geométry of the meridional ellipse shown in figure 5,2,
the angles o and ¢, appear very nearly equal, Although figure 5.2 greatly
¢xaggcrates the eccentricity of the. earth spheroid, the actual difference

between a and o, ¢an be shown néver to exceed 0.0000001 radian. .Because
of this, the following convenient approximation can be made.

€% sin p, cos p,
¢ = arctan —T costy (5.27)
It should be noted that, since a is very small, it is genérally the practice.
to make a small-angle tangent approximation in solving for a. However, in
the baseline program it was fouad that this substitution decreased the accuracy
of the latitude calculation from about 0.0002 arc second to 0.01 arc second,
This is quite a significant difference when comparing geodetic coordinates .as

£-14
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given on. the standard USCGS horizontal .control sheets. Thus, since. speod was
not a problem in the baseline program, the usual small angle approximati/ a was
not made for a so that accuracies comparable with those of the USCGS data

could be majatained.

Next, from the polar form of an ¢quation for an ellipse, R, may bo expressed
as

) b .
Rgmwfm(l - g2 cos’pl)i/“' - (5.28)

Applying the law of sines to triangle OPL provides the re¢lation

d = R sin B/sin p = R, sin a/sin g,

from which
R, sin a

sin p = (5.29)

]

Again, since the differences between @ and o, and R, and R, are negligible,
equation (5.29) can be rewritten as

R, sin a
sin B = R (5.30)

without significant loss of accuracy. Finally, since both a, and B are very
small, equation (5.30) can be simplified to

B = R,a/R. (5.31)

The final step in the calculation of geodetic latitude from the target’s
geocentric latitude is accomplished by noting in figure 10 that

po=p, + B (5.32)

Thus, it has been shown that the transformation of geocentric to geodetic
latitude can be approximated by:

1. Calculstion of the angle a.using e¢centricity, &, and geocentric lati-
tude, p, (eq. (5.27))

2. Caloulation of R, using eccentricity, e, and geocentric¢ latitude,
p, (eq. (5.28))

3. Calculation of p using equation (5.31).

4, Caléulgtion.qf_geodetic,iatitude, p, from geocentric latitude, uy, -
and p (eq. (5.32))

5-15
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It now remains to oalculate the altitude of the target above the roference.
spheroid,. Although the difference between Ry and R, does not have an appres=.
ciable offect on the ealculation of a, it can introduce measurable error in
the cnlculation of h. Therefore, it is desirable to obtain a morc accurate
solution for h than.would be possiblc by direct substitution, This is accomp-
lished by obtaining a rélationship between h and the known parameters R,

RIO Qyq and B.

From the polar equation for an eliipse, the-ratio between R, and R, can be.
expressed as

R, (1 - c?.cos?y,)3/s’

(5.33)

which upon rearranging .ay be written as

R, [ g2(sin p, cos p, + cos P, sin py) /2
i s tate, = [ (580

It is apparent (fig. 5.2) that p, - u, e¢quals B - a,, a very small angle.
This allows another convenient approximation_to be made. That is, sin p, is
approximately equal to sin p,, and cos y, is approximately equal to cos i,.
Thus, by substituting p — a, for p, — u,, using the sine and cosine approx—
imations, and combining equations (5.27) and (5.28), the R,/R, ratio may now
be written as:

WIW
»

»

= [1 + 2a(a ~ B)12/2-, (5.35)

Substituting the expression for P obtained from equation (5.31) yields

=

2

R, " 1 +.2q,(1 = R/R)2 (5.36)

Applying the first two terms of a binomial éxpansion to equation (5.36) yields

R, ai
E: =1 + ];(R - R,). (5.37)

Noting that R - R, very nearly equals h, and making the substitution

R, - R = a,ph (5.38)

in equation (5.37), R, can be expressed as
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s R, = R, + a,ph. . (5.39)

Applying trigonometric relations to triangles OPS .and 0QS in figure 5.2 yields

Noting that a, = B(R/R,) and B = a,(R,/R), equation (5.42) can be rewritten as

. h=Rcos B =R, cos ay. (5.40)
N
-
¢ Approximating cos a, and cos B using the first two terms of a cosine series, . . . .
F{ equation (5.40) becomes
| h = R(1 - p3/2) - R, (1 - a3/2), (5.41)
j or
i» h=(R-R,) - %(RB’ - R,a3). , (5.42)
)
|

h = (R - R, (1 + a,p/2). (5.43)

It now remains to combine equations (5.39) and (5.43) to obtain the following
expression for h in terms of =, R,, a,, and B.

h = [R - (a,Bh + R,)I(1 + a,p/2) (5.44)

Multiplying the two right-hand terms and rearranging, equation (5.44) becomes

(R - R (1 + a,p/2) .

B = (5.45)

1+ a,p + adp2/2 *° v ]

Since the second .term in the numerator is the first two terms of the expansiohn
of 1/(1 = a,B/2), end since the denominator is nearly the value of the first
three terms of the expansion of 1/(1 - a,B/2)2%, equation (5.45) can be
approximated by

(R - R)(1 = a,B/2)2

b= "1 - q,p/2) (5.46).

or

rey,

h = (R = R)(1 - a,p/2). (5.47)

Thus, it has been shown that by the use of small angle approximations and the
first two or three terms of .binomial expansions, it is possible to arrive at
approximation solutions for the spheroid geodetic coordinates and the altitude
above spheroid of a triked target. Whileé the numerous approximations involved
in this solution method ..ight tend to destroy confidence in the accuracy of the
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} solution, the Program Validation section shows that tho approximation delivers

? sgrpriging{y.nccuratc<rcsu1tsAthat are well within the least-significant-bit

o accuracy of most modern. radar tracking systems.

':["

ﬁ ‘ Variable Names

5\‘ Name ... Description
Aa e . Length of semimajor axis of reference spheroid in meters

i  Alt Target altitude above sea level in méters

ﬁ Bb Length of semiminor axis of reference spheroid in meters
Cost . Cosine of target geocentric latitude, py
Cost2 Cos p4?
Alpha a, term in equation (5.26)
E E coordinate in meters
El E coordinate in input units
E2 Eccentricity squared
Base Square root of Base2
Base2 ... .E* + F2 1
Beta p term in equation (5.31) »
F F coordinate in meters.. . 1
F1 ¥ coordinate in input units ?
G G coordinate in meters
G1 . G coordinate in input units
Radius Length of target geocentric position vector in meters f
R1 R, term in equation (5.28) in meters |
Sint $ine of target geocentric latitude u, %"
Ucnv Conversion factor ‘

1
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Computational Algorithms

: The . essential algorithms used for.the Purcell and Cowan approximation solution
- arc as follows:

A. Subroutine Purcell: Subroutine Purcell.contains the primary computational

; algorithms needed for the Purcell and Cowan solution., Upon initisl entry
, into Purcell, the subroutine calls Osel (step 2) to allow the-operator to
% make the output device seiection., After the output selection has been

made, the program calls Efgentry, which prompts the operator to enter the
universal space rectangular coordinates of the targét in the selected
input/output units (E1-F1-G1). Subroutine Efgentry also reéquests the
, appropriate value of geoid separation in the selected units. If this value
i is not known, zero should be entered, The program then returns to
subroutine Purcell where it first converts the input (E1-F1-Gl) coordinates
and séparation of geoid value into meters (steps.5 to 7). Next the square
of the base length (Base2) of the geocentri¢ triangle 's computed as
E2 + F? (step 8)., At .step 9 the square root of Base2 is taken to yield
the value of the base leg., The gevcentric radius (Radius) of the target
point is next computed in step 10, and step 12 computeées the geocentric
latitude of the target point. Intermediate steps (13 to 16) simply compute
the sine and cosine terms needed in steps 17 and 18, In step 17 a value
for Alpha is computed from equation (5.27), in step 18 a value for Rl
(figure 5.2) is computed from equation (5.28), in step 19 a value for Beta.
is computed from equation (5.31), and in step 20 a value for geodetic¢
latitude is computed from equation (5.32). In step 20 the geodetic
latitude in radians is converted to degreées by multiplying by the factor
180/n. The degree mode is restored at step 22 and at step 23 the longitude
of the surface point is computed using thé¢ usual trigonometric relations.
After the computations are completed, the program calls subroutine
Coordprint, which prints out and displays the results, If a value for the
separation of geoid was entered in the Efgentry subroutine, then the target
altitude is adjusted by this amount prior to printout. If additional
entries are desired, the operator presses CONT, and the program returms to
the Efgentry subroutine to receivé the next set of E1=F1-Gl coordinates and
the geoid .separation value.

Purcell:!
GOSUB Osel

. Purcelll:!
GOSUB Efgentry j
E=E1/Ucnv 3
F=F1/Uenv ' 4
G=G1/Ucnv ’
Ras¢2=E*E+F*F

Rase=SQR(Base2) N
Radius=SQR(Bas¢2+G*G) 4
11, DEFAULT ON

12, RAD

13. U1=AIN(G/Basc)

14, Cost=Basc/Radius

15. Sint=G/Radius

e e ke

e o o

VoI WA WN M

[
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16, ...Cost2=Cost*Cost

17. Alphu*ATN(EZ‘Sint?Cost/(1*E2*065t2))
18, R1=Bb/SQR(1-E2%Cost2)

19.. Beta=R1%Alpha/Radius

20, Lat=(Ul+Bota)*180/PL

21. Alt=(Radius-R1)*(1-Alpha®Beta/2)
22. .DEG.

23. Lon=180-ATN(F/E)

24, DEFAULT OFF

25, GOSUB (Coordprint

26. PAUSE

27. GOTO Purcelll

e e TR T o e SR

A B. Efgentry subroutine: The Efgentry subroutine is. used to receive oOperator

j inputs. of the universal space rectangular coordinates.and geoid separation
. in the seélected input/output units. These values are used by the Purcell =
l subroutine .

C. Coordprint subroutine: The Coordprint subroutine is common to all the off-
spheroid coordinate determination programs. It prints both the input
values (E1-F1-(G1) and the output values of target latitude, longitude,
spheroid elevation, and geoid elevation,

Program Operation

The Purcell and Cowan approximation solution is computed by the subroutines 3
previously described. At the start of the main program, the operator is asked
to select the desired input/output units and the spheroid/datum reference to be
used in the calculations,. Once these selections have been made, the maipn menu . 1
is displayed and the operator makes the EFG TO LAT, LON, AND ALT selection.
The program then displays:

SELECT METHOD

PURCELL AND COWAN
LAGRANGE (CLOSED FORM)
BOWRING

.GMD (CLOSED FORM)

WO
nwononu

The operator selects O and presses QONT to proceed to the Purcell and Cowan
solution, . i

A. Parameter entries, Paramcter.éntries are requested sequentially as:
ENTER GEOCENTRIC 'E’..COORDINATE IN (sclected usnits)
ENTER GEOCENTRIC 'F' COORDINATE IN (selécted units) ;
ENTER GEOCENTRIC ‘G’ COORDINATE IN (selected units)

ENTER GEOID SEPARATION IN (selecteéd units)

5~20 }




B, Program output., The entry parameters and computed values are output on the
selected output device as:

GEOCENTRIC. 'R’ COORDINATE = =2459439,14 METERS .
GEOCENTRIC 'F* COORDINATE =

\ ~4625532,17 METERS .
GEOCENTRIC ‘G COORDINATE = 3643414,76 METERS . .

GEODETIC LATITUDE = 35 00 00,0023
GEODETIC LONGITUDE =
SPHEROID ELEVATION
GEOID ELEVATION

(v35,00000065) (0.610865250)
118 00 00,0002 (118.00000005) (2.059488518)
10000.00 METERS

10014,57 METERS

noan

As pPreviously indicated, the-unbracketed angle term
degrees, minutes, and seconds,

value in dégrees, and the

] i vhich is in érror
en the target.altitude is 10,000,000 meters., The altitude

=form solutions,
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TABLE 5.2. PURCELI, AND COWAN. SOLUTION VALIDATIONS

Parameter

Actual value

COmputedﬂvalue -

For L = ~2455593,45 m, F = -4618299,59 m, and G

=-3637679.0C m

Geodetic latitude
Longitude
Altitude

35 00 00,0000
118 00 00,0000
0.00 m

35 00 .00,0000.

118 00 00.0000

0,00 m.

1]

-4619022.86 m, and G

= 3638252.58 m

Geodetic latitude
Longitude
Altitude

35 00 00,0000
118 00 00,0000

1000,00 m -

35 00 00.0C03

118 00 00.0000

1000,00 m

For E = -2459439,14 m, F

i

~4625532,27 m, and G

= 3643414.,76 m

Geodetic latitude
Longitude
Altitude

35 00 00,0000
118 00 00.0000
10000.00 m

35 00 00,0023

118 00 00,0002

10000.00 m

——— -

For E =--2494050.31 m, F

~-4690626 .42 m, and G

= 3695036.64 m

Geodetic latitude
Longitude
Altitude

35 00 00,0000
118 00 00.0000
100000,00 m

For E = -2840162.04 m, F

e ——— o T—————

35 00 00,0234

118 00 00.0001

100000,00 m .

-5341567..92 m, and G = 4211255.44 m

——

Geodetic latitude
Longitude
Altitude

35 00 00.0000
118 00 00,0000
1000000,00 m

35 00 00.1801

117 59 59.9999

1000000.00 m

For E = -6301279.35 m, F

-—

- —

-11850982.85 m, and G = 9373443.36 m

Geodetic latitude
Longitude
Altitude

35 00 00,0000
118 00 00.0000
10000000,00 m

-— -—

35 00 00.3634
117 59 59,9999
9999999.97 m

e A s scessinatd
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The Bowring Approximation Method

The Bowring method. calculates the goodetic latitude and-altitude of a target
from universal spacc rectangular coordinates by the usc of successive
approximations, The program. requires rough calculations of geodotic latitude .
end target altitude as inputs. These calculations are refined during onc or
more passes through the corrector equations until a specified level of accuracy
is achieved. In practice it has been found that a single pass through the -
equations yields results that are comparable to those of the closed-form
solutions, For 12-digit computational cquipment, oné-pass solutions for target
points. under approximately 1,000,000 meters are close to the precision limit of
the system, For higher altitude points, the precision limit of the system is
reached on the sscond pass, so additional passes are unnecessary and do not
improve the. results,

The thesory presented in this section reflects findings contained in

reference 7, which was prepared by the . Ohio $tate University Mapping and
Charting Research Laboratory. However, emphasis ian the present document is
placed on the derivation of the approximating equations and on a comparison of
the results of the Bowring method with results from the other solution

techniques.

¥igure 5.3 shows the first guadrant of a meridional ellipse. N is the normal
iine QP,, the extension of which passes‘through an of f-spheroid point P.

G, is the G coordinate value of the surface point Py, and G is the G coor-
dinate value of the of f-spheroid point P. The distance of the point P, from
the rotational (G) axis is given by r,, end the distance of the point P from .
the G axis is given by r. Obviously, r} = Ej + F2 and r? = E? + F?, Other
important. geometric relationships from figure 5.3 are:

F 4
‘ Tangent
lire
-

A B
Pi(ry, Gy)

:-P(rp G)

Note: The coordinate r
jies in the meridional
plane of the target

Q

t
(!,.,v....

Figure 5.3.
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ro = ¢ =~ h 6os p = N cos g, (5.48)

and

Gp = G.=.h sin p = [(1 - g?)N] sin p. (5.49)

The¢ equation of the meridional ellipse shown in figure 5,3 is given by

2 2
I %; =1, (5.50)

The slope of & tangent line to the¢ ellipse is obtained by implicit differenti~—
ation of equation (5.50)¢

2r . 26 G _
az + bz T 0 (5051)
or
dé6 _ _b: <«

Obviously, the slope of the normal line is the negative reéciprocal of the slope
of the tangent line, or

- 21T T (5.53)

The equation for points lying on the tangent line to the meridional ellipse
at point P, is

2
b2 1,

G, - G, = -—-;;G—o“ (xr, = xrq)s. (5.54)

vwhere T, and Gt define the set of points lying on the tangent line.

Rec¢alling that b2/a2 = 1 -~ g2 and grouping the v and G terms yields

a? = ror_+ 1 (5.55)

t 1 - g2 GG

to

Equation (5.55) must be satisfied for all points lying on the line tangent tc
the meridional ellipse .at the point P,.

Similarly, the equation for a line normal to the méridional ellipse at the
point P, is.
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G~ G, == = (r_ = 1,). (5.56)

n b3 ry, "'n
In equation (,5.56);,:'n and G.n define the.sot of points on a line normal to the .
mefidional ¢llipse at the point (ry, Gg)..

Again, by substituting a2?/b2.= 1/(1 = e?) and grouping like terms, equation
(5.56) may be rewritten as

T
BB o) p2) = g

ro Go . (5057)

If the relations for r, and G, given in equations (5.48) are substituted and
the terms .rearranged, equation (5.57) may be rewritien for the line passing
through P, and P as:

(1 -¢€2) r sinp-Gcos p+ ¢2h sin u cos p = 0, (5.58)

Since the specifi¢ coordinates of .the point P have been defined as r and G, the
subscript n has been dropped in equation (5.58).

Substituting k = (a2/b2) - 1 and rearranging equation (5.58) further yields

tan p = Ll__'.'r_)_c‘ - I_‘_g.ll_sr_i.n_B).. , (5.59)

To obtain starting values for h and sin p, a spherical solution may be used.
Thus,

p = arctan(G/r) and h = (r? + G2)2/2 - (a + b)/2. (5.60)

These values are then substituted into the h and sin u terms in equation (5.59)
to obtain a more accurate approximation of u.

Recause k is always less than 0.007 and the value of h sin pu is. gemerally much.
smaller than the values of r and G, errors in the rough calculation of h sin p
should not. greatly affect the first—pass approximation of tan p obtained from
equation (5.59). (Note that equation (5.59) is an exact equation, but the
result is approximate becausé¢ both h and sin p are only roughly known at this
point,)

The next step makes use of the equation for the tangent line at the point

P, (eq. (5.55)). Since both the coordinates (r, G) of the point P are known
exactly, and sinoce the value of p has been approximeted with reasonable
accuracy using equation (5.59), it is now possible to apply the general formula
for the distance béetween a point and a line to.compute a morée accurate value of
L.

From analytic geometrfy, the distance d between a point P(x,, y,) and a line
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Ax,' 'inyl + C
= (A% T me,i e (5.61)

Ia this case, the. coordinates of the point P are (r, G) and the equation for
the tangent line in the r and G coordinate system was given.by equation (5,55),
Substituting values for r, and G, from equations (5.49) and rearranging the
terms .of cquation (5,55) to the form Ax + By + C = 0 yields o

i

r, cos u + G, sin p - a*/N = 0, v (5.62)

where rt andpGt again define the set of points lying on the¢ tangent line.

If the values from equation (5,62) are now substituted into formula (5.61), a
more accurate value of h can be obtained as

h=rcosp+ G sinp =~ a?/N,. (5.63)
where

N = a/(l - g?sin2yu)2/2 (5.64)
If the first-pass valus of tan p obtained from equation (5.59) is denoted by

(1 + X)G ~ k(h sin p),

r

t = tan p, = , (5.65)

and if (h sin p), denotes a sécond approximation of h sin pu based on the
value of p obtained from equation (5.65) and a valu¢ of h obtained from equa-
tion (5.63), then a second approszimation for h sin p may be obtained as fol-
lows., A new value of h (denoted by h,) is obtained from reapplication of
the equation for the distance betweeén a point and a line,

hy = r cos u, + G sin yu, - a2/N,, (5.66)
wheére

N, = a/(1 - s2sin2p, )32, (5.67)

Thén, using the new value of h, (h sin p), can be expressed as

(b sin p), = h, sin y,. (5.68)

The final value for u may now be obtained by substituting the value of h sin M
given by equation (5.68) into equation (5.65) and solving for p as
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The final.value for h is computed from either

or

Greater

the first term,

In the event that additional accuracy is required, a second pass through the
approximating equations can be made using the value of p obtained.from equation
(5.69) and the valu¢ of h obtained from either equation (5.70) or (5.71).

Summarizing, the steps used in calculating geodetic latitude .and altitude are:

1.

2.

(1L + k)6 - k(h sin p),

Hy = arctan z . (5.69)

¢
sin u,

h = - (1 - ¢2)N, (5.70)

I
cos M,

- N. (5.71)

accuracy is obtained from the equation having the larger denominator in

Obtain rough approximations of geodetic latitude and altitude using
equations (5.60).

Use the values of h and p obtained from step 1 in equation (5.65) to
obtain an improved value for p which is needed in equation (5.68). Also
compute N from the¢ new value of p.

Solve equation (5.68) for an improved value of h sin p.

Solve equation (5.69) for an improved value of .

Compute the final value of h from either ¢quation (5.70) or (5.71). i
If additional accuracy is required, use the values of p and b from i
steps 4 and 5 to again compute p using equation (5.65) and follow the

same procedures as outlined in steps 3 to §., Repeat as many times as
necessary to reach the precision limit of the system.

Variable Names

Name Description
Aa Length of semimajor axis of referenmce spheroid in meters _ :;w
Aa2 a? in meters squared

Alt

Height of of f-spheroid point above reference spheroid in meters
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. Bb
Bh2
Cosu

3 E

Gl
Geoidsep
Geosep

R

Hsinu

R2

Sinu

Times

Uénv

M i e et kit - it K

Length .of semiminor axis of reference spheroid in meters
b3 in meters squared .

Cosine of geodetic latitude

E coordinate
E coordinate
Eccentricity
F coordinate
F.coordinate
G coordinate

G c¢oordinate

in meters
in Seonut units
squared

in meters.

in input units

in meters

in input units

Separation of geoid in.meters
Separation of geoid in input units

Working height of target above reference spheroid in
meters

Product of h and the sine of the target's geodetic
latitude

(a2/b%) - 1

Length of great mormal passing through the surface
point in meters

Square root of R2 in meters
E2 + F2 in meters squared
Sine of geodetic latitude
Tangent of U

Number of times the approximation equations are to be
repeated

Geodetic latitude in degrees

Conversion factor
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The eéssential algorithms used.for.the Bowring approximation method are as
follows:

A.

gl fas 24 VT -
. " ot

v an - . R VR——— T

Computational Algorithms

Subroutine Bowring: Subroutine Bowring contains the primary computational
algorithms needed fox the Bowring solution. Upon initial enm.ry into
Bowring, the subroutine calls Oscl to allow the operator to make the Output
device selection. After the output selection has been made, the program
calls Efgentry which prompts the opcrator to enter the universal space
rectangular coordinates of the¢ target in the selected input/output units
(E1-F1-G1) .. Subroutine Efgentry also requests the appropriate value of .
geoid separation in the selected units. Jf this value is unknown, zero
should be entered. The program then returns to subroutine Bowring where
the E1, F1, and Gl values are converted from input units into meters and
stored in.steps 9 to 11 as E, F, and G, Using the values of E and F, a
value for R is computed (steps 12 and 13) for use in the approximating
equations, The other input parameter required by the Bowring algoritbm is
G. Tn steps 15 and 17 the program implements equations (5.60) to obtain a
first approximation of geodetic latitude and target altitude. A FOR-NEXT
loop is established in step 18 to control the number of passes which will
be made through the approximating equations.. In the baseline program, the
number of passes is operator selectable. For example, if two passes are 1
desired, then the simple variable.Times is se¢t equal to 2 to .provide two '
passes through the. FOR-NEXT loop. Upon entry into the loop, steps 19 and
20 implement equation (5.65) and provide .a better approximation of geodetic
latitude, p. The new value of p is then used to improve on the estimate of
target altitude by implementation of équations (5.67) and (5.66) (steps 23
to 25), Using the improved value of h from step 25, a new value of u is oo
obtained in step 27 through a direct implementation of equation (5.69). ﬂ
The value of N is again computed (step 29) using the latest value of u, and
a final value of h is determined from equation (5.70) or (5.71), depending
on the magnitude of p. At ste¢ep 31 the the first pass .is completed., If
additional passes have been sélécted by the operator, step 32 will cause
the program to return to step 18 where the same sequence of operations will
be commenced using the values of p and h returned from the pass just
completed,

To .determine whether the maximum accuracy has been achie¢ved, test cases can
be run using several iterations through the approximating equations. When
the values stabilize, the approximations have reached the meximum accuracy
attainable with the-system. It has been found that.ome pass through the 1
above 2laorithm reaches the precision limit of a.12-digit computational

system for all but very high altitude_points (10,000,000 meters. or higher).

After the latitude and altitude computations have been completeéed, the
longitude of the surface-point is obtained from the usual trigonometric
relations (step 34), and the results are displayed or printed in. the
universal Coordprint subroutine., Tf additional values are to be computed,
the operator presses CONT and the program returns to the entry point,
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1. Bowring:!
2. GOSUB Osel.
1 3, Aa2=Aa%An
. 4, Bb2=BL*Bb
b 5. K=Aa2/Bb2-1

6., Times=2
X 7. Bowringl:!
. 8., GOSUB Lfgentry
& 9. E=L1/Ucnv
‘ 10, ¥=F1/Ucnv
‘ 11, G=G1-Ucnv

12.  R2=E*E+FsF

. 13. R=SQR(R2)

i 14. DEFAULT ON .

‘ 15, .U=ATN(G/R)

) 16.. DEFAULT OFF

17. HﬁSQR(R2+G‘G)—(Au+Bb)/2

18. FOR Count=1 TO Times

) 19. T=((1+K)*G-K*(H*SIN(U))) /R

20, DEFAULT ON

21... U=sATN(T)

22. DEFAULT OFF .

23, GOSUB Necalc

24, Cosu=C0S(U)

25. H=R*Cosu+G*Sinu-Aa2/N

26, .. Hsinu=H*Sinu

27. U=ATN{(1+K)*G-K*Hsinu)/R

28, Cosu=C0S(U)

29, GOSUB Ncalc

30. . IF Sinu)>Cosu THEN H=G/Sinu~-(1-E2)*N
31, IF Cosud=Sinu THEN H=R/Cosu-N

32, NEXT Count

33, DEFAULT ON i
34, lon=180-ATN(F/E)
35, DEFAULT OFF

36. Lat=U

37. . Alt=H

38. GOSUB Coordprint
39, PAUSE

40. GOTO Bowringl

B.. Efgentry subroutine: The Efgentry subroutine is used to receive operator
inputs of the universal space rectangular coordinates and geoid scparation
in the selected input/output units. These values are used by the Bowring
subroutine. ' ]

-

C, Coordprint subroutine: The Coordprint subfoutine is ¢ommon to all the of f—
sphéroid coordinate determination programs. Tt prints both the input
values (E1-F1-G1) and the output values of target latitude, longitude,
§pheroid elevation, and geoid elevation,

4
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Program Operation

‘ The Bowring approximation solution is computed by the subroutines previously

- described. At the start of the main program, the operator is asked to select ... ...
) the. desired input/output units and the spheroid/datum reference to be. used in

the caléulations. Once these selections have been made, the main menu is

displayed and the opérator makes the EFG TO.LAT, LON, and ALT selection., The

| CRT then displays a roéjuest for the operator to select the Jdesired solution

d method as follows:

SELECT METHOD

PURCELL AND COWAN
LAGRANGE (CLOSED FORM)
= BOWRING

} 3 = GMD. (CLOSED FORM)

n

VO

To use the Bowring approximation, the operator enters 2.

L The next CRT display requésts that the operator select the desired output

device.,
SELECT OUTPUT DEVICE
h
0 = CRT
) 1 = THERMAL PRINTER
2 = LINE PRINTER .-

The program then requests that the operator select the number of passes to be
made through the approximation equations. This request is displayed as

ENTER NUMBER OF PASSES (DEFAULTS.TO 2) !

The last operator entries requested are the E-F-G coordinates and the geoid
separation, This request is displayed sequentially as: 1

ENTER GEODETIC 'E’ COORD IN (selected units) .
ENTER GEODETIC 'F’' COORD.IN (selected units)

ENTER GEODETIC 'G’' COORD IN (selected units)

ENTER GEOID SEP IN (selected . units)

After each prompting message shown above is displayed on the CRT, the operator
responds by entering the appropriate values in the units selected. . The program
converts all input valnes to meters and then calculates the target altitude and e
geodetic latitude., Unless another number of passes has beéen seléected by the :
operator, the program makes two passes through the computational algorithms,

When the altitude and geodetic¢ latitude ¢omputations are completed, the program

¢alculates target longitude and then ¢alls Coordprint.

re;
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Subroutine Coordprint displays the computed results in the following form:
DATUM: . NORTH AMERICAN (NAD)  EARTH MODEL: . CLARKE 1866

GEOCENTRIC 'E' COORDINATE. =-— =2459439,14. METERS
GROCENTRIC 'F' COORDINATE = *4625532.27.METERS
GEOCENTRIC 'G' COORDINATE. = 3643414,76 METERS

34 59.59,9999. . (. 34,99999998) (0.610865238)
118 00 00.0002 (118,00000005) (2.059488518)
10000,00. METERS
10014.28 METERS

GEODETIC LATITUDE
GEODETIC 'LONGITUDE
SPHEROID ELEVATION
GEOID ELEVATION

nononn

Again, the unbracketed angle term is the angle value in degrees, minutes, and
seconds. The first bracketed angle term is the angle value in degrees, and the
second bracketed angle term is the angle value in radians. In the example
shown, meters are the selected input/output units.

Program Validation

Validation of the Bowring approximation solutions is perxformed in the same
manner as Jdescribed for the other of f~spheroid coordinate determination
programs, and the same entry values arée used to allow comparison of the
computational accuracies of the four off-spheroid programs. It is interesting
to note that the Bowring approximation method achieves better accuracy than the
closed-form solutions when just one pass is used. This is due to a loss in
accuracy when roots of large bigh-order terms.in the quartic equations must be
found.

Table 5.3 contains results from the Bowring me thod when one pass through the
approximating equations is used. Table 5.4 contains results from the: two-pass
solution. Although the second pass provides someé improvement in accuracy, it
is not apparent in table 5.4 except for the 10,000,000 meter altitude point.
The improvement at the lower levels occurs in digits beyond the precision shown
in the tables and is far less than the least—significant-bit values of common
tracking equipment,
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TABLE 5.3,

ONE-PASS BOWRING SOLUTION VALIDATIONS

Parameter.

—— o~-ve -

Actual. value Computed .value

For E = ~2455593.45 m, F = -4618299.59.m, and G

3637679.00 m .

Geodetic latitude

Longitude
Altitude

35 00 00.0000 35 00.00.0000
118 00 00,0000 118 00 00,0000
0.00 m 0.00 m

For E = -2455978.02 m, F = ~4619022.86 m, and G

3638252.58 m

Geodetic latitude

Longitude
Altitude

35 00 00,0000
118.00 00.0000
1000.00 m

35 00 00.0001 .
118 00 00.0000
1000,00 m

For E = ~2459439,14 m, F = -4625532.27 m, and G

3643414.76 m

Geodetic latitude

Longitude
Altitude

35 00 00,0000
118 00 00.0000
10000.00 m

34 59 59,9999.
118 00 00.0002.
10000.00 m

For E = -2494050.31 m, F = -4690626.42 m, and G

3695036.64 m

Geodetic latitude

Longitude
Altitude

35 00 00.0000
118 00 00,0000
100000,00 m

35 00 00.0000
118 00 00.0001
100000,00 m

For E = -2840162.04 m, F = -5341567.92 m, and G

- m.

4211255.44 m

n

Geodetic latitude

Longitude
Altitude

n—

35 00 00.0000
118 00 00.0000
1000000.00 m

35 00 00,0000
117 59 59.9999
1000000.,00 m

For E = -6301279.35

m, F = ~11850982.85 m, and G = 9373443 .36 m

Geodetic latitude

Longitude
Altitude

35 00 00,0000
118 00 00,0000
10000000.00.m

34 59 59,9984
117 59 59,9999
9999999,91 m
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» TABLE 5.4, TWO-PASS BOWRING SOLUTION VALIDATIONS

: Parameter. Aétual value Computed value.

For I = -2455593 .45 m, F = -4618299,59 m, and G = 3637679.00 m

,: Geodetic. latitude. . 35 00.00,0000 35-00,00.0000,
V\ . Longitude 118 00 00,0000 118 00 00,0000
b_ Altitude 0,00 m 0.00. m

- For E = -2455978.02 m, F = -4619022.86 m, and G = 3638252.58 m.

—————————

Geodetic latitude . .. 35 00 00,0000 35 00 00.0001.
Longitude 118 00 00.0000. 118 00 00,0000
Altitude 1000,00 m 1000,00 m

For E = —-2459439,14 m, F = —-4625532.27 m, and G = 3643414.76 m .

Geodetic latitude 35 00 00.0000 34 59.59,9999
Longitude . 118 00 00,0000 118 00 00,0002
Altitude 10000,00 m , 10000,00 m.

For E = -2494050.31 m, F = ~4690626.42 m, and G

3695036.64 m .

Geodetic latitude 35 00 00.0000 35 00 00.0000
Longitude 118 00 00.0000 118 00 00,0001 i
Altitude 100000.00 m 100000.00 m

For E = ~-2840162.04 m, F = -5341567.92 m, and G -4211255.44

a——— - - ——

"

Geodetic latitude 35 00 00.0000 35 00 00,0001
Longitudé . 118 00 00.0000 117 59 59.9999 }
Altitude. 1000000.00 m 1000000.00 m j

——

For E = -6301279.35 m, F = -11850982.85 m, and G = 9373443 .36 m

- —

—— o ———

Geodetic latitude 35 00 00.0000 35 00.00.0000 ‘i
Longitude 118 00 00.0000- 117 59 59.9999 4
Altitude 10000000.00 m 10000000.00 m !

— - - - — -

> g
e
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Tho GMD Closed-~Form Solution

The GMD closed-form solution computes the geodetic latitude and altitude of a
target from universal space rectangular space coordinates by the use of .two
simultancous equations, The first is the cquation for the normal line to a
meridional cllipse that passes through the target point. The second is the
standard equation for the reference ellipse.. Since the GMD method provides a
direct closed-form solution, the accuracy of the result is dependent. only on
the preéision limit of the system. With a 12~decimal-digit computational word
length, latitude caléulations are accurate to better than 0.0001 arc second and

altitude calculations are accurate to better than 0,01 meter up to altitudes of
10,000,000 meters.

Figuré 5.4 shows the first quadrant of & meridional ellipse. N is the normal.
line QP,, the exténsion of which passes through any of f-sphergoid point P.

G, is the G coordinate value of the surface point P,, and G is the G coor-
dinate value of the of f-spheroid point P, The distance of the point P, from
the rotational (G) .axis is given by r,, and the distance of the point P

from the G axis is given by r. Obviously, rZ = E2 + F? and r? = E? + F2,

Note that the r and G coordinates and the geometrical relationships between.

the points P and P, are the same as those shown in figure 5.3 for the Bowring
solution, :

P(r,. ©)

T En— Polry, Gy)

i
Note: The coordinate r
lies in the meridional
rlane of the tarpet.

Figure 5.4,

The equation for the normal line to the meridional ellipse that passcs
through the points P and P, has been derived in the preceeding section as
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a* G,
G~ G, = g7 57 (r - xy). (5.72)

Ty

Equation (5,72) may be solved for Gy, yielding

b3r,6 .
g :O(ai By (5.73)

Gy =

The equation for the meridional ¢ellipse shown in figure 5.4 is given by

e

QIH
win

o
Y

The coordinates of the surface point Po(ry, Go) must therefore satisfy equa-
tion (5.74) as

3 G}
ik Y =1, (5.75)

Substituting the value for G, from equation (5.73) into equation (5,75), com-
bining terms, and clearing fractions yields an expression for r, in the form

of a quartic equation,
[(a? - b3)2b2)rd — [(2a4b2 - 2a2b4)r]r}
+ [(a%b2)r2 + (a2b4)G? - a2b2(a2 - b2)2]r2

+ [(2a¢b? - 2a4b4)rlr, - [(ab?)r]? = 0, (5.76)

Since a .and b are¢ known ¢lliptical parameters, and both r and G are the known
coordinates of the point P, the substitutions

A = (a2 + b2)2p2 (5.77)
B = =(2a4b? ~ 2a2p4)r (5.78)
C = (a*b?)r2 + (a2b4)G* ~ a2b2(a? - Hh2)2 (5.79)
D = (2a%b2 - 2a4b4)r (5.80)
E = ~(aéb?)r2 - - (5.81)

may be made to yield an equation in.the form

Ar + Br} + Cr? + Dry + E= 0, (5.82)

The -solution of equation (5.82) will yield two real roots., One will be the
vialue of r which lies on the normal line where it intersects the meridional
ellipse directly velow the target point. The other intersection will occéur at
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the far side of the ellipse where the negative extension of the normal line
again intersects the meridional cllipse. Two other roots will be obtained in
the solution of the quartic equation. Roth of these will be imaginary numbers
with no significanco. to this solution. Knowing the nature of the roots, it can
be seen from figure 12 that the real rodt whose sign is the same as the sign of
r will be the proper root,

Tn the GMD algorithm, equation (5.82) is solved using subroutine Quartic, and
the value of r, obtained from this subroutine is then substituted into
equation (5.73) to obtain the corresponding value for Gg.

Knowing both r, and G,, it is a simple matter to derive the geocentric lati-.
tude of the surface point P,. Then, using equation (1.8), the geocentric
latitude of the surface normal point can easily be converted to. geodetic
1stitude. Having the exact geodetic latitude of the surface point, the
altitude of the target can be obtained from either equation (5.70) or equation
(5.71) . ec M

The longitude cf the surface normal point is easily found from the expression
A = 180 —-arctan(F/E). (5.83)

This completes the derivation of the GMD closed-form solution to the problem of
computing a target's geodetic coordinates and altitude from known E-F-G
coordinates. It is basically a solution of two.simultaneous equations with two
unknowns. Unfortunately, the relationships are such that the solution involves
finding the woots of a quartic equation, a task which is somewhat costly from
the standpoint of computing time. However, the method is slightly faster than
the Lagrange solution and is more direct in that the actual coordinate value is
obtained rathér than the secondary Lagrange multiplier term. It has teen found
that, for extremely high altitude targets, the GMD algorithms will provide
somewhat better accuracy than the Lagrange solution. For example, the E-F-G
coordinates of a target at 35 degrees latitude, 118 degrees longitude, and
1,000,000,000 meters altitude are:

E = -387024183.84, F = -727886625.27, and G = 577214115.35.

Cn a 12-digit computational system, the Lagrange solution will compute a tsrget
latitude of 35.00001604 degrees and a target altitude of 1,000,000,197.3
meters, Using the same E-F-G coordinates, the GMD algoritbm will yield a
latitude of 35.00000812 degrees and an altitude of 1,000,000,099.8 meters.
Obviously, both solutions have reéached the precision 1imit of the system
because of the extremely large altitude computation. However, in this
instance, it appears that the GMD solution yields accuracies that arée slightly
better than those obtained using the Lagrange solution. At a target height of
100,000,000 meters, the GMD routine returns a result that is accurate to within
4/10,000 of an ar¢ second in angle and 0.2 meter in altitude. At and below
10,000,000 meters target altitude, the GMD routines return valiues acéurate to
within 1/10,000 arc second in angle and 0.01 meter in altitude.
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?‘ Name
A0
2 An

‘ Alt
Amb
An .
Apdb
BO
B2
B4
Bb
Bn
COa
Cob
COc
Cosu
DO

EO

El
E2
En
F1 .
Fn
G1

Gn.

Varinble Names

Doscription
Constant portion of A term in cquation (5,82)
Length of semimajor axis of refcrénce sphoroid in meters
Altitude of target above reference spheroid.in meters
a~-b
Normalized value of semimajor axis (An = 1)
a+b
Constant nortion of B term in equation (5,82)
Second power of normalized b térm
Fourth power of normalized b term
Length. of semiminor axis of reference spheroid in meters
Normalized value of semiminor axis
Constant portion of first part of C term
Constant.portion of second part of C term
Constant portion of third part of C term
Cosine of geodetic latitude
Constant part of D term
Constant part of E term
Input E.coordinate in selected units
Eccentricity squared
Normalized E coordinate
Input F coordinate in selected units
Normalized F coordinate
Input G coordinate in selécted units

Normalized G coordinate
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Gn0 Normalized G coordinate of surface point
2 Lat Goodetic latitude of surface point
g Lon. . Longitude of surface point
ht N Great normal through surface point
:Z Rn Normalized r coordinate of target point
i‘ Rn0 Normalized .r coordinaté of surface point
y“ Rn2 Square of normalized r caordinate of target point
I Sinu Sine of geodetic latitude of surface_point
) Tanup Tangent of geocentric latitude of surface point
' Terma.. Term A in .equation (5.82)
1 Termb Term B in equation (5.82)
Term¢ Term C in equation (5.82)
3 Termd Term D in equation (5.82)
4 Terme m.~m E in equation (5.82) . 4
U Geodetic latitude of surface .point (also Lat) ’
Ucnv Conversion factor
X1 First real root of quartic equation i
X2 Second reéal root of quartic équation
Computational Algorithms 1
Algorithms esséntial to the GMD closed-form computation of geodetic latitude, @
lpggitude. and altitude from universal space rectangular coordinates are 1
presented below, ]
A. Subroutine Gmd: Subroutine Gmd is the main computational subroutine for |

the GMD solution. Upon initial entvy into Gmd, steps 1. to 16 ¢ompute the

constant parts of the A, B, ¢, D, and E terms in equations (5.77) to

(5.81). These are dependent only on the a and b values of the selected . -
reference spheroid, and, once calculated, can be used throughout all ’
subsequent computations. Both the a and b values are normalized (steps 2. 1
and 3) to the length of the semimajor axis (Aa) of the reference spheroid,
This causes a and all higher powers of a to équal 1 and. reduces the b
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values to less than 1. All length parameters.are normalized to prevent a
precision overflow in the highe: power terms,

' At step 17 the program calls Osel to allow the selection of the desired
. output device, After the output device selection has boen made, the
program calls Efgentry (step 19) which prompts the operator to enter tho
universal space reotangular coordinates of the targoet (E1, F1, and G1) in
) the scleeted input/output units, In stéps 20 to 22, thesoc values are
? converted to meters and normalized, Steps 23 and 24 reduce thoe threo
dimensional problem to two dimensions.by computing the value Rn, which is
the normalized abscissa of the target lying in the plane of the moridional
cllipse. passing through the target point. In steps 25 through 29, the
, constant portions of terms A, B, C, D, and ¥ (eqs. (5.77) to- (5.81)) are
i combined with the normalized target coordinates Rn and Gn to obtain the
complete cocfficiants of the quartic equation (5.82)., Note that program
variable Rn represents r in equations (5.77) to (5.81), and Gn represents G .
in equation (5.79). Subroutine Quartic is called at step 30 and four roots
of equation (5,82) are computed, The two real roots (X1 and X2} are then
tested in steps 31 and 32 to determine the root whose sign matches the sign
of the target coordinate Rn. The simple variable Rn0 is set ¢qual to the
root with the matching sign., This root is the.abscissa of the surface
point whose normal passes through the target. At step 33, the surface
coordinate Rn0 is substituted into equation (5.73) to yield a value of GnO,
the normalized ordinate of the surface point.

In the solution to equation (5,73), note that program variable Rn(- rep~

resents Ry, Gn0 represcents Go» Rn represents r, and Gn repesents G, Also

note that the value of. a in the sume equation is equal to 1 because all

variables have been normalized to the length of the semimajor axis. In the
solution for Gn0 used in step 33, the (a? - h2) term in the denominator i
has been factored into (a + b) and {a - b), which axe represented &8s ‘
program variables Apb and Amb,

Step 34 computes the tangent of the geocentric latitude (tanup) of the
surface point, and step 36 applies equation (1.8) to convert geocentric ;
latitude to geodetic latitude. The value cof geodetic latitude is then uscd )
in step 40 to compute the E-W radius of curvature, N, that is needed for
the derivation of. the target altitude in equation (5.70) or (5.71)., Again,
note that the selection of equation (5,70) or (5.71) is made (stéps 41 and
42) based on a test to determine which will yield the more accurate
calculation of altitude for the specific value of p.

I FOVPSR S

The valie of longitude is determined very simply in step 45 by resolving
the target’s E and F coordinates into angular form, and the universal

subroutine Coordprint is called to display the results, After displaying :
the results, the program pauses (step 48). If another point is to be
reduced, the program will next proceed to Step 18 where a new set of E~I'=G .
coordinates may be entered.

re

It should also be mentioned that if a value for geoid sepatation were
éntered in subroutine Efgentry, then the final sea-level elevation value
would be corrcctéed by the samé amount,
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1.
2.

3.

4.

5-

6.

7.

8-

9-
10.
11,
12-
13,
14.
15,
16.
17.
18.
19.
20.
21,
22,
23.
24,
25.
26.
27.
28,
29,
30,
31.
32.

33.

34,
35.
36.
37.
3s.
39.
40,
41.
42,
43.
44,
45,
46.
47,
48.
49,

Gmd .}

An=l

Bn=Bb/An

B2=Rn*Bn

B4=12%12

Apb=An+Bn

Amb=4An-Bn

Amb2=Amb*Amb

Apb2=Apb*Apb

A0=Amb2*Apb2%B2
BO=-2*B2*Apb*Amb

C0a=RB2

COb=B2*Amb2%Aph2

COc=B4

DH=2%B2*Apb*Amb

E0=-B2

GOSUB Osel

Gimdiz!

GOSUB Efgentry

En=E1/Ucnv/Aa

Fn=F1/Ucnv/Aa

Gn=G1/Ucnv/Aa
Rn2=En*En+Fn*Fn

Rn=SQR(Rn2)

Terma=1

Termb=BO*Rn/A0
Termc*(COa*Rn2+C0b+COc*Gn*Gn)
Termd=D0*Rn/A0
Terme=E0%*Rn2/A0

GOSUB Quartic

Rn0=X2

IF Sgn(X1)=SGN(Rn) THEN Rn0=X1
Gn0=Ga*B2*Rn0, (Rn~Rn0*Apb*Amb)
Tanup=Gn0/Rn0

DEFAULT ON
U=ATN(Tanup/(1-E2))

DEFAULT OFF

Sinu=SIN(U)

Cosu=C0S1Y)

GOSUB Ncalc¢

IF SinudCosu THEN Alt=Gn*Aa/Sinu-(1-E2)*N
IF Cosu)=Sinu THEN Alt=Ru*Aa/Cosu-N
Lat=U

DAFAULT ON

Lon=180-ATN(Fn/En)

DEFAULT OFF

GOSUB Coordprint

- PAUSE e ¢

6OTO. Gmdl . o

Efgentry subroutine: The Lfgentry subroutine has been deseribed for the
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] previous off-spheroid coordinate determination programs. The same
) subroutine is used by tho GMD program,

l

. .

- C. Coordprint subroutine: The coordprint subroutine is common ta all of f«

' spheroid coordinate determination programs and has been described
previcusly,

Program Operation.

The. GMD closed-form solution uses the same input/output formats as described
for the other of f~spheroid coordinate determination programs. The initial
display is:

SELECT METHOD

PURCELL AND COWAN
LAGRANGE (CLOSED FORM)
BOWRING

GMD (CLOSED FORM)

MR oRN

w o

The operator enters 3 and presses CONT. The program next displays: !

SELECT OUTPUT DEVICE

0 = CRT
1 = THERMAL PRINTER
2 = LINE PRINTER

After the output device has been selected, the Efgentry subroutine sequentially
displays:

ENTER GEODETIC 'E’' COORD IN (selected units). o !

ENTER GEODETIC 'F' COORD IN (selected units)

ENTER GEODETIC 'G" COORD IN (selected units) 1

ENTER GEOID SEP IN (selected umits) i

If the value of geoid separation is unknown, 0 should be entered and geoid and
spheroid eleéevation will be the same values in the result.

The program then enters the computational algorithm and computes the values of
geodetic latitude, longitude, altitude above spheroid, and altitude above
geoid. The results are displayed as: -

re
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DATUM:. . NORTH AMERICAN (NAD)  EARTH MODEL : CLARKE 1866

GEOCENTRIC 'E' COORDINATE = ~2459439,14 METERS
GROCENTRIC 'F* COORDINATE = -4625532,27 METERS
GEOCENTRIC 'G’ COORDINATE = 3643414,76 METERS

( 35,00390001) (0,610865238)

35 00 00,0000
(2.059488518)

= 118 00 00.0002 (118,00000005)
= 10000.00 METERS
= 10014,28 METERS

GRODETIC ‘LATITUDE

GEODETIC LONGITUDE

$PHEROID ELEVATION

GIOID PLEVATION
Again, the unbracketed angle term is the.angle value in degrees, minutes, and
seconds. The first bracketed angle term_is the angle value in degrees, and the
second bracketed angle term is the angle value in radians. In the example
shown, meters areé the selected input/output units.

Program Validation

olution is. performed in the same manner &as
d coordinate determination programs, and. the
n of the computational accuracies
the GMD solution.

Validation of the GMD closed—-form s
described for the other. of f-spheroi
same entry values are used to allow compariso
of the four programs. Table 5.5 contains results from

5-43




e T L -

TABLE 5.5, GMD CLOSED-FORM SOLUTION VALIDATIONS

Parameter Actual value . Computed value
For E = -2455593.45 m, I = -4618299.59 m, and G = 3637679..00 m
Geodetic latitude 35 00 00.0000. 35 00 00,0001
Longitude 11800 00.0000 118 Q0 00,0000

Altitude 0.00 m 0.00 m. ..
For E = -2455978,02 m, F = ~4619022.86 m, and G = 3638252.58 m
Geodetic latitude 35 00.00,0000 35 00 00,0002 .
Longitude 118 00 00,6000 118 00 00.0000
Altitude 1000,00 m 1000.,00 m
For E = -2459439.14 m, F = ~4625532.27 m, and. G = 3643414,76 m
Geodetic latitude 35 00 00,0000 35 00 00,0000
Longitude 118 00 00.0000 118 00 00,0002
Altitude 10000.00 m 10000.00 m
For E = -2494050.31 m, F = ~4690626 .42 m, and G = 3695036.64 m
Geodetic latitude 35 00 00,0000 35 00 00,0000
Longitude 118 00 00.0000 118 00 00.0001
Altitude 100000.00 m 100000,00 m
For E = -2840162 .04 m, F = -5341567.92 m, and G = 4211255.,44 m
Geodetic latitude 35 00 00,0000 35 00 00,0002
Longitude 118 00 00,0000 117 59 59.9999
Altitude 1000000,00 m 1000000,01 m
For E = —-6301279.35 n, F =

~-11850982.85 m, and G = 9373443 .36 m

Geodetic latitude

35 00 00,0000

35 00 00,0001

Longitude 118 00 00,0000 117 59  59.9999
Altitude 10000000,00 m 10000000,00 m
5-44
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CHAPTER 6

ATMOSPHERIC REFRACTION

9 This chapter describes the refraction correction method used in the GMD

- baseline system. The software accepts raw range and elevation data from any
local tracking system and performs the high-accuracy refraction corrections
necessary for the analysis of test data. In addition, this chapter includes
discussions of the methods used to determine atmospheric refractivity from
o locally observed psychrometric data or weather data.,

i Refractivity Calculations

General Theory

To accurately correct for the effects of atmospheric refraction, it is

necessary to develop a refractivity model that closely approximates real-world
conditions. Several methods are available for computing a refractivity profile
from psychrometric or weather data. Generally, the projection of the

refractivity profile is based on computed values of station refractivity, Ns,

and an exponential decay factor or scale height, Hs.. While Ns can be computed ..
with a reasonable degree of accuracy, the computation of Hs is less accurate

and can_degrade the elevation correction significantly. Basically the problem .
with Hs is due. to tbree factors. First, the makeup of the atmosphere is

dependent on area weather and climatic conditions that greatly influence the
refractivity profile, especially at the lower elevations. Second, most models ]
are based on an éxponential decay pattern, which may vary significantly from
the true refractivity profile, especially when air masses move from water to
desert. regions, when intensé local surface heating is present, or when optical
or r-f energy must travel through nonuniform l1ocalized weather conditions.
Last, it is difficult to make actual measurements of atmospheric conditioms at
elevations above the tracking site prior to ¢ach mission since this generally
requires the use of specialized balloon-carried (radiosonde) equipment.
Because of these problems, it has generally been the practice to use one or
more methods of scale height c¢omputation based in part on the surface
measurements and in part on seasonal averages of psychrometric profiles. This .
is somewhat in the nature of a Farmer’'s Almanac approach to the correction of o
otherwise high-precision tracking data, and, regardless of how closely the !
modeling equations match the¢ long-term statistical data, there is really no way
to be sure that the correéctions for any given mission are reasonably near the
correct values. !

R S 7

In the GMD baseline program, a reéfractivity profile can be obtained from any of
four séeparate methods: (1) radiosonde data entered manually into the program, I
(2) extrapolation of local and distant (e.g. Sentinel Peak) measurements, (3)

standard regression équations based on surface méasurements and statistical

decay patterns, or (4) combinations of the first three methods. Both the

séecond and third approaches assume that refractivity varies exponentially with
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altitude and that the complete refractivity profile at any given time can be.
obtained by determining the refractivity that exists at the tracking station or
at other nearby observation points of known elevation, or both,

Calculation of Ns From Psychrometric Data

In the absence of a direct-measurement refractometcr, it is necessary to obtain
accurate psychrometric or weather data from which the modulus of refraction can
be computed, Psychrometric parameters are obtained as dry-bulb temperature,
wet-bulb témpsrature, and barometric pressure. Weather data are obtained as
temperature, pressure, and dew point or relative humidity. Three combinations
of these parameters may be used in the reduction program that computes the
partial pressure of water vapor and dry air pressure, which, along with temper-
ature, aré necessary for the calculation of station refractivity. The program
also computes saturation vapor pressure, relative humidity (if not given as an
input parameéter), and absolute humidity. While the latter parameters are not
required for the refractivity computations, they are important for cofiparing
derived data with data obtained from radiosonde or other direct measurement
sources.

If weather data are used, care must be exercised during below freezing
conditions .to insure that the constants used in the reduction equations.are
consistent with the method initially used to calculate thé relative humidity or
dew point. Most scientific and technical organizations performing
meteorological observations now compute relative humidity with respect to water
rather than ice at temperatures below O degrees Celsius, This procedure has.
been adopted by both the Smithsonian Institute and the U.S, Weather Service
because it offers the following advantages:

1, Most hygrométers indicate relative humidity with respect to water at
all temperatures,

2. The majority of clouds at teémpératures below O degrées Celsius consist
mainly of water.

3. Relative humidities in excess of 100 percent will not generally be
obtained with respect to water. .

4, The majority of existing tables are based on saturation with respect
to water,

Howéver, there are still many psychrometric tables and certain measurement
devices that provide relative humidity data obtained with respect to ice for
below freezing conditions, If the relative humidity measurement has. been
obtained from oné of these sources, then the corrésponding constants must be
used in the equations for computing the partial pressure of water vapor,

The saturation vapor pressure of wateér, eg is obtained from .the relation
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e, = (T + gypole * /(T + &) (6.1)
where T is the dry-bulb (normal) temperaturc, end a, b, ¢, and d ar¢ constants
whose-values are given in table 6.1, Since dry-bulb temperature is required by
cach of the input options, saturation vapor pressure is computed by the same
méthod in all three cases.,
If psychrometric data (dry-buldb temperature, wet-bulb temperature, and
pressure) are input to the program, then the remaining parameters are computed
as shown in equations (6.2) to (6.4). First, the partial pressure of water
vapor i< found from the relation
+ +
e, = (W+ atrole H R/ DT g p gmy )T - W (6.2)
where T is the dry-bulb temperature, W is the wet=bulb temperature, and a, b,
¢, d, f, and g are constants given in table 6.1,
The relative humidity is given by
U = ev/es. (6.3)
The absolute humidity, H, is given by
I '
T and W are theé.same as previously described, and a, b, ¢, d, f, g, and k are
constants whose valu¢s are provided in table 6.1, ]
If the second input option (temperature, pressure, and dew point) is selected,
e, is computed from
4
e, = (D + ay2gole + o/(D + &)l (6.5)
where D is the temperature of the dew point. Relative humidity and absolute
humidity are again computed from equations (6.3) and (6.4).
1f the third option is selected, then relative humidity, temperature, and
pressure are the input parameters, and e, is computed from. {
'1
e, = U e (6.6)
¢
Absolute humidity is again obtained from equation (6.4). ’

Note that in keeping with current conventions for the calculation of relative
humidity, the constants a, b, and ¢ remain the same for both above freezing and
below freezing conditions., However, as previously indicated, if the value of U
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was obtained from a source that made the calculation using over—~ice tables,
then for consistenocy the over—ice values for a, b, and ¢ must be used for helow

freezing conditions,

Once the partial pressure of water vapor has been obtaited, the modulus of.
refraction at the measvs:ment station can be obtained from the familiar r-f
refractivity equation,

¥ ] ¢
i f - . _é_- A v . I3 ._..__.V_._..
N x 106 = 77.6 P + 72'Q”T T d + 3,75 x 10 (T + a)2* “mw$6‘1>“”
Another commonly used variation of equation (6.7 is .
P °y
- §  mr———
N x 106 = 77.6 T+ d + 3.73 x.10 T+ d) " (6.8)

Since the constants are given in SI.units, the values of Pd and e, must be

expressed in millibars and T must be expressed in degrees Celsius.. The value
for d is taken from table 6.1 for SI units. The remaining constants used in
equations (6.7) and (6.8) are those of Smith and Weintraub. They are con-
sidered accurate to 0.5 percent for frequencies up te 30,000 Mhz. The dry
air term, Pd‘ is obtained from the close approximation ..

P, =P - e (6.9). .

where P is the total barometric pressure, Pd is the dry air pressure, and

ev is the partial pressuré¢ of water vapor.

Optical refractivity for light of wavelength A is given by

77.5 Pt
N x 10¢ = T (1 + 5.15 x 10 3/A% + 1,07 x 10 4/A%). (6.10)

When using equation (6.10), A is expréssed in microns, Typical values are
0.555 micron for mormal white light and 0.75 micron for ruby laser light,

Equations (6.1) to (6.6) are based on a general expression of the Claperon-
Clausius différential equation that relatés saturation vapor pressure,
absolute temperature, and latént heat of transformation, . The expressions for
vapor pressure, absolute humidity, and relative humidity are derived in
reference 8.

Theory relating to équations (6.7) to (6.9) is presenteéd in detail in refer—
ence 9.

Equation (6,10) was taken from referénce 10, which also conitains considerable
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information e
scale height,

TABLE 6.1, CONSTANTS

garding tlhe various techniques for the calculation of atmospheric

MName

Dew.

Dp
Es

Ev

Variable Names
Description
Constant a in table 6.1
Constant b ip table 6,1
Constant ¢ in table 6,1
Constant d in table 6.1
Dew point in degrees Celsiys
Dew point in kéelvins
Saturation vVapor pressure of water
Partial pressure of water vapor

Constunt f in table 6,1

6-5

Constant 4 | Value of constants for- .
U over water U over ice .
SI units U.S. units SI units U.S. units
-4.92830 -4.92830 -0.32286 -0.32286 .
=2937.40 15287.32 =-2705.21 -4869,38
23.5518 32,2801 11.4816 10.0343
273.15 459,67 273.15 459.67
- 6,600 x 10-4 3.595 x 10=+ 6.660 x 10+ 3.595 x 10-+
7.570 x 10-7 3,336 x 10-7 7.750 x 10~7 ~2.336 x 10-7
0.21668 0.82455 0.21668 0.82455

-
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G Constant g in table 6.1
Ha Absolute humidity
K Constant k in table 6.1
K1 First Smith and Weintraub constant
K2 Second Smith and Weintraub constant
K3 Third Smith and Weintraub constant
* Nop(1) Refractivity for white (yellow-green) light
i Nop (2)- Refractivity for ruby laser red light
Nri R-f refrgctivity
) Press Total barometric pressure
‘ Téempd Dry air temperature in degrees Celsius
Td Dry air temperature in kelvins
A Tempw ~ Wet-bulb temperature in degrees Celsius
Tw Wet-bulb temperaturé in kelvins
u Relative humidity in pércent
Computational Algorithms i
The algorithms used for computing the partial pressure of water vapor and for
r=f and optical refractivity are provided below. f

A. Executive. Psy: Psy is a subprogram of GEOD. Upon entry into Psy, Osel is ..
called to permit the operator to select. the appropriate output device.,.
Subroutine Psycon assigns values to the constants in table 6.1, and Psymode
allows the operator .to sclect one of the three possible input.combinations,
the selection being denoted by flag L. The program then goes. to Psyinput
to permit the operator to input the necessary psychrometric or weather
parameters, When the parameters have been entered, the program branches
to Psyl, Psy2, or Psy3 depending on the value of L (1, 2, or 3). In these
subroutines, all the psychrometric parameters needed for the refractivity

‘

algorithms are computed. The executive routine then calls Ref ¢omp, which
computes optical and .r-f refractivity, and Psyprint, which prints or :
displays the results, The program pauses after the printing is completed, v
To enter additional psychrometric or weather data, the operator presses CONT

and the program returny <o Psystart and subroutine Psyinput.

rn
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Psy:!

GOSUB .Psycon

GOSUB Psymode

Psystart:!

GOSUB Psyinput

ON L GOSUB Psyl,Psy2,Psy3
GOSUB Ref comp

GOSUB Psyprint

GOTO Psystart

VeI EWN =

!

‘- B. Subroutine Psycon: Subroutine Psycon séts up values for tlhe various

= constant terms used in the psychrometric and refractivity computations,

' The values of these constants can be found in the 8I.column for over-water
i conditions in table 6.1.

Psycon:!
A=-4,9283
B=-2937.4.
C=23.5518
D=273.15
F=6 .6E-4
. G=T7.57TE-7
K=.21668
K1=77.6
K2=72
EK3=3,75ES

. e

.

-
O W-IO WL W
. - . . L2

C. Subroutine Psymode: Subroutine Psymode prompts the operator to select the
input mode. If mode 1 is selected, the¢ input parameters are wet-bulb
temperature, dry-bulb temperature, and pressure, If mode 2 is. selected,
the input parameters are temperature, dew point, and pressuré, If mode 3 ,
is selécted, the input parameters are. temperature, relative humidity, and v :
dew point., Psymode also.allows the operator to make the appropriate ‘
seléction of over-water .or over—ice constants for below freezing conditions.

D. Subroutine A: Subroutine A replaces constants used for over-water
conditions with. those used for over—ic¢e conditions when relative humidity
is one of the input parameters, and when its value has béen ¢omputed using
over—ice constants., The same over-ice constants are also provided in table

e e e i man -

6.1,

1, Al

2. A=-.32286

3. .B==2705.21 . -

4, C=11.4816 -
5. RETURN ;

E. Subroutine Psyl: Subroutine Psyl ¢omputeés the saturation vapor préssure
of watef, the partial pressure of water vapor, thé absolute humidity, and
thé rélativé humidity using dfy-bulb température, wet-buld temperature,. and
atmospheric¢ pressure. Step 4 is a direct implementation of equation (6.1),
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LT

F,

H.

step 5 implements equation (6.2), step 6 implements equation (6.3), and
step 7 implements equation (6.4),

Psyl:!

Td=Tempd+D. -

Tw=Tempw+D

Es=Td**A1*10%* (C+B/Td)
Ev=Tw**A%10%** (C+B/Tw) -~ (F+G*Tempw) ¥Press* (Td-Tw)
.U=Ev/Es

Ha=K*1E3*Ev/Td

RETURN .

COI AW dH W
®

Subroutine Psy2: . Subroutine Psy2 computes the partial pressure of water
vapor from dew point, Steps 4, 5, 6, and 7 are implementations of
equations (6.1), (6.5), (6.3), and (6.4), respectively,

Psy2: |

Td=Tempd+D

Dp=Dew+D
Es=Td**A%10%#* (C+B/Td)
Ev=Dp#*#*A*10%* (C+B/Dp)
U=Es/Ev
Ha=K*1E3*Ev/Td

RETURN -

¢ o

RX-IAn UL WOMR

Subroutine Psy3: Subroutine Psy3 computes the partial pressure of water
vapor from relative humidity and temperature¢, Steps 3, 4, and § implement
equations (6.1), (6.6), and (6.4), réspectively.

1. Psy3:!

2. Td=Tempd+D

3. Es=Td**A*10%%(C+B/Td)
4, Ev=U*Es

5. Ha=K*1E3*Ev/Td.

6. RETURN

Subroutine Refcomp: Subroutine Refr computes the modulus of refraction
for normal white (yellow-green) light, ruby laser light, and C-band r-f
enérgy. The FOR-NEXT.loop initiated at step 3 uses a wavelength of 0.555
micron (theAfrequency of yellow-green light) for the first pass and 0,75
micron (the frequency of ruby laser light) for the second pass, Step 7
implements e¢quation (6.10) for the two optical passes, Step 10 implements
equation (6.7) to obtain a refractivity value for the r-f energy.

Refcomp: )
Td=Tempd+D
FOR N=1 T0 2
IF N=1 THEN Lam=.S§55.
IF N=2 THEN Lam=.75
Lam2=Lam*Lam
Lan4=Lam2*Lam2
. Nop(N)=77.5%Press/(Td*1E6)*(1+5,1E-3/Lam2+1,07E~4/Lam4)

e o e & e o e
.

YRR . T O RN S
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| 9. NEXT N |
s 10, Nrf=(K1*Press=Ev)/Td+K2%Ev/Td+K3%Ev/Td**2/1E6
11. RETURN.

I. Subroutine B: Subroutine B is used when U,S§, Customary units have been
seleotod, Tt converts the¢ pressure and density terms from SI to U,S.
Customary units. for printout. In steps 2, 3, and 4, pressures in millibars
arc converted to inches of mercury by the conversion equation

g 1 mb = 0,029529988 in. Hg, Step § converts density in grams per cubic

by meter to-density in pounds per cubic .foot using the relation
‘ 1 1b/£t3 = 6,24279606 x 10° g/m?,

1 B:!

2 Ev=Ev*,029529988

3. Ep=Ep*,029529988

4, Press=Press*®,029529988
5

6

o o

. Ha=Ha%*6,242796 06E-5
. RETURN

J. Subroutine C: Subroutine C is used when the input temperatures are in U.S.

CustOmary units, The subroutine converts input temperaturé¢ parameters from
Fahrenheit to Celsius.

1. ¢!
2. Temp=5/9%(Temp-32)
3. RETURN

K., Subroutine D: Subroutine D is used when pressures are¢ éntered in inches of
mercury. The conversion equation. is 1 mb = 0,029529988 in. Hg.

1. D:!
2, Press=Press/.029529988
3. RETURN

Program Operation

The psychrometric and refractivity computations are selected from the same menu
as described for other subprograms of GEOD., When the main menu is displayed,
the operator selects RF AND OPTICAL REFRACTIVITY, and the program immediately
requests the output device selection as described in previous programs,

Next, the program séquentially asks the operator to make the following
selections,

SELECT UNITS

0 =8I
1 =1ys

1hs
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SELECT INPUT ...

' 0 = DRY TEMP, WET TEMP, AND BARO PRESSURE
’ 1 = DRY TEMP, DEW POINT, AND BARO PRESSURE
2 = DRY TEMP, RI, HUMID, AND BARO PRESSURE

X The program then sequencially requests operatur inputs of the thrée parameters
' ' selccted. FEntries made. by the operator are in tho units selected (S or U,S,
M Customaryl.

- If 0 is sélected, the rosults are printed in the seclected units as:

75.0000 DEG FAHRENHEIT
54,0000 DEG FAHRENHEIT
29,9200 IN: HG
29.9291 IN HG
- 0,2502 IN HG
40,8601 PERCENT
0.0984910 LBM/CU I'T
0.0003254
0.0002691
0.0002669

} TEMPERATURE (DRY)

g TEMPERATURE (WET)

. BAROMETRIC PRESSURE

‘ SATURATION VAPOR PRESSURE OF WATER
PARTIAL PRESSURE OF WATER VAPOR
RELATIVE HUMIDITY
ABSOLUTE HUMIDITY
R-F REFRACTIVITY
OPTICAL REFRACT (WHITE LIGHT)
OPTICAL REFRACT (RUBY LASER)

wowowouw unnun doen

If 1 is selected, the results are printed as:

)
TEMPERATURE (DRY) 75..0000 DEG FAHRENHEIT
DEW POINT TEMPERATURE 42 ,0000. DEG FAHRENHEIT
BAROMETRIC PRESSURE 29,9200 IN HG
SATURATION VAPOR PRESSURE OF WATER 29,9291 IN HG
PARTIAL PRESSURE OF WATER VAPOR 0.2705 IN HG
RELATIVE HUMIDITY 40,8601 PERCENT
ABSOLUTE HUMIDITY 0.0514954. LBM/CU FT
R-F REFRACTIVITY 0.0003254 o
OPTICAL REFRACT (WHITE LIGHT) 0.0002565 {
OPTICAL REFRACT (RUBY LASER) 0.0002532 . i
If 2 is selected, the results are printed as:
{
TEMPERATURE (DRY) 75.0000 DEG FARRENHEIT . ... . . {
BARCMETRIC PRESSURE - 29,9200 IN HG
SATURATION VAPOR PRESSURE OF WATER 29,9291 IN HG ]

(VI T A [ O N B |

PARTIAL PRESSURE OF WATER VAPOR 0.3535 IN HG
RELATIVE HUMIDITY 40.0000 PERCENT
ABSOLUTE HUMIDITY 0.0005452 LBM/CU FT
R-F REFRACTIVITY 0,0003153

OPTICAL REFRACT (WHITE LIGHT) 0,0002691

OPTICAL REFRACT (RUBY LASER) 0.0002669

ra;

After the results havé been printed on the output device, pressing CONT will .
retufn the program. to the entry point for the next se¢t of psychrometric or !
weather parameters, Noté that if SI units were selected during the initiation,

6-10
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temperatures would have beén in degreos Colsius, pressures in millibars, and
density in grams per cubic meter,

i Program Validation

! Partial pressure ¢alculations are validated against values from the Smithsonian

i tables, Refractivity values arc validated against tables in reference 9,
! Sample validation valu¢s are¢ provided in table 6.2,

R TABLE 6.2. SAMPLE REFRACTIVITY CALCULATIONS

Rel Barometric Ambient Computed Computed

hum, pressure, temperature, ey e,

% mbar (in. Hg) deg C (deg F) mbar (in, Hg) mbar (in. Hg)

Computed
N x 10¢

68 1760,0 (22.443) 34.0 ( 93.2) 53,255 (1.,573) . 36.213 (1.069) 335.3

80 850.0 (25.100) 42.0 (107.6) 82,091 (2.424) 65.673 (1.939) 456.1
39 800.0 (23.624) 29.0 ( 84.2) 40,095 (1,184) 15,637 (0.462)  269.4
67 1013.2 (29.920) 23.1 ( 75.0) 29.665 (0.876) 19,878 (0.587) 348.8

74 1017.6 (30.050) 8.9.( 48.0) 11.412 (0.337) 8.432 (0.249) 319.¢6

50 1014.6 (29.960) 3.9 ( 39.0) 8.060 (0.238) 4,030 (0.119) 303.8
36 750.0 (22.147) ~-1.0 ( 30.2) 5.679 (0.168) 2.044 (0,060) 224.2

47 700.0 (20.671) -20.0 ( -4.0) 1.254 (0.037) 0.589 (0.017) 218.0

79

-
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The Baseline Refraction Correction Program

}H The bascline refraction algorithms were developed by GMD Systems to provide a
;‘ refraction correction method that could be operated on @& desktop computer of

; moderate word length (12 decimal digits) and still provide high accuracy
results, especially at low or negative elevation angles, The program does not
use the conventional Snell'’s Law approach since that technique either fails or
. becomes extremely inaccurate at the low elevation angles where the majority of
i the aerodynamic.tracking operations are performed. Gradient refraction_is.an
iterative technique that sequentially projects the wavefront along the
propagation path for intervals whose exact lengths are determined by an
optimizing algorithm wi*hin the program. At each iterative stcp, the velocity
gradient perpendicular to the wave travel is calculated and used to compute the
bending angle for that particular segment. The next sequential increment is
then propagated normal to the adjusted plane of the wavefront.

Becaus¢ of the large number of iterative steps required at low elevation
angles, the. length of the ptopagation.path segments must be optimized so that
both roundoff and truncation errors are minimized, If the segments are too
long, the truncation errors will be excessive. If the segments are tooO short,
the roundoff errors will be excessive. For a given range and angle condition,.
the optimizing algorithm should be designed to select an iteration interval
that minimizes the total error.

The gradient refraction algorithms can operate at any elevation angle from -90
degrees to +90 degrecs. The program has Bno singularity points. and provides
valid results at all angles. In addition, the mathematical algorithms have {
been designed to provide greater. accuracy in the angle calculations through the
meéasuréement and accumulation of small angles rather than large &anglés. In the
Snell’s law approach, the angle of incidence is measured. from the vertical at {
the point where the ray passes from one shell into another. This can lead to ;
inaccuracies as demonstrated by the following example. At a typical tracking ’
angle of 0.5 degree, the angle of incidence is large, 89.5 degrees. On a 4
typical twelve-digit computer, the sine of 89.5 degrees is computed to be i
0.999961923080., However, the arcsine of the same number is returned as y
29,500000104300 degrees. This amounts to & combined error of 0.0000001043 . 3
degree in the single sine and arcsine calculation. On the other hand, if one
were to take the sine of 1.23456789E~51 degree (50 zeros) on the same. computer, o
the result would be 2.15472745200E-53 . However, in this case, the arcsine is

returned as 1.23456789E-51 degree, precisely the samé as the starting value.

In.ray tracing solutions, where Snell'’s Law may be reapplied as many as 500 to

50,000 times for a single solution, the sine error can become éxcessive, even

at moderately high clevation angles. Tn the gradient solution, the angle

¢alculations have been designed (1) to use trigonometric functions in their most ‘
accurate regions, and (2) to prévent register saturation by the use of small, !
c.ther than large, angles. Because of this, gradient refraction is capable of
delivering computational-accuracies,that are several orders of magnitude better -
than those possible when using the conventional Snell's Law approach. This ¢
also permits the use of fast small angle approximations when additional

computational speed is required.
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Gradient Refraction Solution

\ General Theory

) Two principal angles are computed in the gradient refraction solution: the wave-.

. front bending angle, and the earth interior angle subtended by the arc from the

- tracking antenna to the target., While the incremental values of these angles

g are extremely small (typically 0,0004 degree for the incrémental bending angle

‘ and 0.0008 degree for the incremental interior angle), small angle approxi-

o mations were found to cause a small but measurable difference in both range and

’ angle values due to the long radius involved. Thus, for the highest accuracy.
solutions,. the sine and tangent values are computed rather. than approximated,

| For faster but less accurate solutions, small angle approximations are used,

j The geometry used in the gradient refraction solution is shown in figures

{ 6.1(a) to 6.1(e).

Figure 6,1(a) shows the first segment of a beam transmitted from a tracker at Pg,
The. beam is defined by an upper ray, a central ray, and a lower ray. The

) refractivity at the midpoint of the central ray is given by N;, the refractiv-
ity at the midpoint of the upper ray is given by Nu,, and the refractivity at

the midpoint of the lower ray is given by Nl,. The rays are shown with a sep-
aration of 0.5 meter, and R, is the geocentric radius vector of the tracking

site represented by the point P,. The scale height (altitude at which the

\ modulus of refractivity will have decayed to 1/e of its sea—level value)

is given by hs, The height of the tracking site above sea level is given

by h,. 1

The distance traveled by the central ray in time At is approximately

_ ¢ x At
n, = 55+ (6.11)

The distance traveéled by the upper ray in time At is approximatzly

t

_ e x A
Du, T+ No,* (6.12)
The distance traveled by the lower ray in time At is approxzimately
_ e x At i

The altitude of the midpoint of the central ray above its starting point is

Dh, = 0.5 D, sin E,. (6.14)

N1

Therefore, the refractivity at the midpoint. of the central ray is given by

N, = Njel Ba/hs) (6.15)
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and the refractivity gradient at the same point

is given by

dn _ _y b (-h,/hs)

Since the ray is traveling at an angle E; with respect to the 1ocal horizon-
tal plane, the refraction gradient across the ray axis is given by

dN, = 0.5 x dN x cos E,. (6.17)
The wavefront bending angle, shown as By, is computed as
B, = aresin (Duy - p1,), (6.18)
and the X-Y elements of the line P,P, are determined as
X, = D sin E; end Y, = D cos E;. (6.19)
The earth interior angle subtended by the .ray P P, is given by
= arctan 3, y_ (6.20)
S Ry * Y,’
and the altitude of the point P, above the tracking site is given by
xi
R, = 3 (for E greater than or equal to 0.79 rad) (6.21)
sin &,
or
Y1 + R1
K, = (for E less than 0.79 rad) (6.22)

cos &,

techniques. as given above to find the bending

Each iteration.follows the same
le éi’ and the length of the new radius vector

angle Bi' the earth interior ang
Ri' Each succeeding elevation angle Ei+1 is found by subtracting each bending
and adding each earth interior angle §i
to be referenced to the local vertical

angle Bi to the current elevation angle
E.. This causes the elevation angle E,

i
at the appropriate segment starting point Pi-l'

until the full measured range Pm is

depleted by subtracting the free-space value of D for the selected incremental
time At (D = ¢ x At) from the measured distance remaining at the start of
each succeeding iteration, When the measured distance reaches zero, the
program interpolates to find the final values of ¢ and R, The successive
jteration steps are diagrammed in figure 6.1(b).

The values of earth interior

angles ﬁi ar¢ accumulated as ﬁtotal

.

rs




Values for corrected elevation (Ele), corrected distance (Dc), and target alti-
tude (ht) arc then determined by finding the Cartesian ¢lements of the

target point with reference to the starting point by the simple geometry shown
in figure 6,1(¢). Since values for R, Reinape @nd §t0ta1 are now known, the

Cartesian clements X and Y can be found from
X = Rfinal x sin gtotal (6.23)
and
Y = (Reinat * 05 &45401) ~ Roo (6.24)

Noting the geometric relations shown in figure 6.1(c), it is now possible to
compute El¢, Dec, and ht from the following relations, .

Elec = atn (Y/X) (6.25)
De. = (X% + Y2)3/2 (6.26)
B, = Re, 0 = Ry + by (6.27)

Variable Names

Name Description

Aa Semimajor axis of reference spheroid

Bb Semiminor axis of reference spheroid

Bi Bending angle for ith segment

Bit Total accumulated bending angle

C Velocity of light (2,997924562E8) in meters per second
Cosei Cos Ei

D Distance traveled by ray in free space during time T

Da Accumulated arc distance traveled by ray .

Dc Corrected target range

bh Approximate length of vertical component of ray segment
Dist Refraction-corrected distance traveled by c¢entral leg of

ray segment

6-16




v . LT

-

D1
Dm

Dn

Dni

Dtot

H

Hal

Nol

Distancc traveled by lower leg of ray in time T
Measured range

Refractivity gradient at the midpoint of the ray referenced
to..the local vertical -at the origin of the ray

Refractivity gradient at the midpoint of the ray computed
pérpendicular to the direction of the.ray propagation

Accumulated equivalent uncorrected (free-space) distance
traveled by ray

Distance traveled by upper leg of ray in time T
Eccentricity squared
Ec¢centricity of reference spheroid

Instantaneous elevation angle referenced to local
vertical at location of wavefront -

Corrected target e¢levation angle
Measured elevation

Factor. to interpolate length of final ray segment when
measured distancé¢ has been deépleted

Spheroid elevation of tracking site

Height of lowér measurement station when using refractivity
values from two stations to determine scale height

Height of higher me¢asurement station when using refractivity
values from two stations to determine scale height

Average instantaneous height of the ray segment above
the starting ¢levation

Atmospheric scale height

Average refractivity index over the center leg of the ray
ségment

<N

Average index of réfraction over the upper leg of the ray p

scgment
Station refractivity
Refractivity at lower station when values from two stations

are used to compute scale height
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No2 .

Nsl

Nu

Num

P2

Pi

Pit.

Ri
Scalehl
Sflag
Sinei
T.

To

The éssential algorithms used in the

below,

A. Gdref executive subroutine:. Gdref controls the various calls needed for

Refractivity at higher station when values from two stations
are used to compute scale height

Sca=-level refractivity

Average index of refraction over the upper leég of the ray
segment

Index showing number of iteration cycles completed
2n

Earth interior angle subtended by the ith.ray
Total accumulated earth. interior angle
Instantaneous earth-centered ray height.

Manually entered value of scale height

Flag indicating which At selection was made

sin Ei

Incremental propagation timé used in computations

Incremental propagation time .optimized to reduce roundoff
and truncation errors for various measured ranges

Horizontal component of ray segment referenced to the
local vertical of the wavefront .

Vertical component of ray segment referenced to the
local vertical of the wavefront

Computational Algorithms

initialization, data entry, computation, and display,

GOSUB Gmode .
GOSUB Ginit
Gdentry:!
GOSUB Entry
GOSUB Compute
GOSUB Elc
GOSUB Print
GOTO Gdentry
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Subroutine Gmode: Subroutine Gmode requests operator sele¢ction of

operating modes, tracking source, and iteration intervals, It produces the.
various menu statemonts that are fully described in the Program Operation
section. These are straightforward INPUT statements and are omitted here

to avoid unnecessary duplication, The subroutine also provides average
earth radius values (Ro) .for the various. tracking site selections,.

Subroutine Ginit: Subroutine Ginit initializes elevation, range, and earth
radius parameters and sets up the selected At interval to be used in the
iterations. At step 1 the radian mode is set. At step 2, the constant T
is set equal to the free¢—space speed of light., In steps 3 through o,
starting values for. the succeeding iterations are assigned the input values
of H (tracking site elevation above sea level), Em (elevation neasured in
degrees), and Dm (distance measured in meters), Ro is the average carth
radius at the tracking site. In step 8 the variables used to accumulate
incremental values through the integration process are initialized to 0.

In step 9, the time of travel (T) for each ray is initialized to TO, an
optimum value selected to reduce the combined effects-of roundoff and
truncation error. If a faster mode has been selected, as indicated by the
speed flag (Sflag), then T may be assigned values of 2 To, § To, 10 To, 25
To, or 100 To, which will decrease the computation times by factors of 2,
5, 10, 25, or 100, respectively. This increased. speed increases the. amount
of truncation.error (eérror arising from the fact that the curved ray path
is being approximated by longer straight-line rays) and provides a less
accurate solution, ]

1

2., C=2.997924562E8

3. Hi=H

4. FEi=Em*2*PI1/360 3
5. Di=Dm
6
7
8

. Ri=Ro
. F=1 A
. Ra=Ea=Da=Bit=Pit=Num=Dtot=Xtot=Ytot=Dh=0

9, T=To {

10, IF Sflag=2 THEN T=To*2
11, IF Sflag=3 THEN T=To*5
12, IF Sflag=4 THEN T=To*10
13, IF Sflag=5 THEN T=To*25
14, IF Sflag=6 THEN T=To*100
15.. ON Hsflg GOTO Hs1,Hs2,Hs3

16. RETURN :
Subroutine Hsl: Subroutine Hsl computes the scale height (reciprocal of N
the exponmential decay factor) for use in.the refractivity ¢quation. The o
algorithm uses a 10-step iterative process during which an assumed initial .

scale height of 6600 meters (based on the year—round average) is refined by
use of the currént station refractivity measurément., A value of sea-level 1
refractivity is also computéd. Steps 4 and 5 are an implementation of the
HS1 equations given on page 4 of reference 10. This is the same me thod
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émployed by Goddard SpacefliglL. Center to computé Hs values that are
tabulated for use by Johnson Space Center,

1, Hsl:!

2. Hs=6600

3, FOR N=1 TO. 10

4, Nsl=No*EXP(H/Hls)

5. Hs=1000/LOG(Ns1/Nsl1-7 ,32E-G*EXP(5577*Nsl))
6. NEXT N

7. RETURN .

Subroutine Hs2: Subroutine Hs2 assigns an operator-selectable value of
scale height (Scalehl) to Hs and computes sea-level refractivity based on
that value. This solution assumes that scale height is known from
radiosonde measurements or other means,

1, Hs2:!

2.  Hs=8calehl

3, Nsl=No*EXP(H/Hs)
4. RETURN

Subroutine Hs3: Subroutine Hs3 computes theé values of scale height and sea-

level re¢fractivity from refractivity measuréments made at two known
elevation points,

1. Hs3:!

2. Hs=(Ha2-Hal)/LOG(Nol/No2)
3, Nsl=Nol*EXP(Hal/Hs)

4, RETURN

Subroutine Cycle: Subroutine Cycle performs the iterative solution that
computes the final values of bending angle, internal ¢arth angle, and ray
height., The variable Num counts the number of integration steps that have
been performed. FEi is the instantaneous elevation angle of the ray as
measured from the local horizontal at the start of the interval. At

step 4, the freé-space distance which would be traveled by the ray in time
T is computed., C is the velocity of light. At .step 5, the approximate.
increase in altitude to the midpoint of the ray is computed.. In step 6,
the altitude of the midpoint of the ray is added to the starting altitude
value, and the sum is used to compute the average refractivity (eq. (6.15))
for the specific ray segment. In step 7, the value of dn/dh (equation
(6.16)) is computed by combining eéquations (6.15) and (6.16). Step 8
impléments equation (6.17), and steps 9 and 10 compute the values of the
average modulus of refraction for the upper and lower ray segments (fig.
6.1), At step 11, the measured distance remaining is reduced by the
equivalent free-space distance traveled by the ray segment., Jf some
measured distance remains, the program branches to step 15. OCtherwise, the
program interpolates (step 13) to obtain a factor whic¢h must be applied to
the last segment ¢alculations to proportion thé actual distance traveled by
the last ray segment, This is accomplished in stép 14 wheére the equivalent
free-space distance is multiplied by the computed factor. In stép 15, the
actual distance traveled by the central ray is computed, and in steps 16

6-20

e -3 N oLl - T
L o Akt 2ata eesesimeddh P Y




and 17 this value is adjusted to yield the distanoces traveled by the upper
and lower segments of the ray (fig. 6.1). Da, the actual.accumulated
distance traveled by the central ray, is increased by the. ineremental.
travel of the sentral ray during this segmentAframe, In step 19, the
bending angle for the current sogment is. computed and added to the-total
accumulated bending angle (step 20). Note¢ that since the separation
between the upper. and lower sogments is taken as being 1 meter, the actunl
bending angle relation (tan Bi = oppostte/adjacent) has a denominator of 1,
and the fact that Bi is a very small angle allows the substitution of _Bi
¢or tan Bi, which simply yields Bi = Du - D1. The X and Y components of
the ith ray segment are computed in steps 21 and 22, and these values are
used in step 23 to calculate the central angle (Pi) subtended by the ith
segment. In step 24 the jncremental angular contribution of the ith segment
js added to the total accumulated earth interior angle Pit. A new value
for Ri is then computed from the simple trigonometry shown in figure 6.1,
which is implemented in steps 26 and 27. Two methods of computing Ri are
provided, and the method that provides the greatest accuracy for the
specific Ei value is selected by the program logic. Hi, the altitude of
the ray above the tracking siteé, is updated in step 29, end the total
cOnsumed.free—space‘(or.measured) distance is updated in step 30. If the
measured distance remaining (Di) is greater than 0, the prosram”recyles to
step 1. The same¢ process is repeated until the .measured distance is
consumed, at which point. the program returns to. the executive routine. .

1. Num=Num+l

2. Cosei=COS(EL)
3. Sinei=SIN(Ei)
4, D=C*T

5. Dhe.5*D*Sinei
6. Ni=Nsl‘EXP(-(Hi+Dh)/Hs)
7. Dn=-1/1s*Ni

8. Dni=.5*Dn*Cosei
9. Nu=1+Ni+Dni

10. N1=1+Ni-Dni
11.. Di=Di-D

12.. IF pi>0 THEN 15
13, F=(D+Di)/D

14, D=F*D

15. Dist=D/(14Ni)
16. Du=D/Nu

17.. p1=D/N1 .

18. Da=Dist+Da

19.. Ri=Du-D1

20, Bit=Bit+Bi

21, yY=Dist*Sinei .

22... X=Dist*Cosei

23, Pi=ATN(X/(Ri+Y))

24. Pit=Pit+Pi

25, Ei=Ei-Bi+Pi

26, 1IF Ei)=.T79 THEN Ri=X/SIN(Pi)
27, IF Ei¢.79 THEN Ri=(Y+Ri)/COS(Pi)
28, MNi=Ri-Ro
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29, Dtots=D+Dtot
30, IF Di)0 THEN 1
31, RETURN

H. Subroutine El¢: Subroutine Elc computes corrected elevation and corrected
range of the target. Step 1 sets the degree mode., Step 2 computes the
radian to degree conversion factor (Dcon). Steps 3 to 5. convert the total

interior angle, total bending angle, and final elevation angle to degrees, ..

Dx and Dy, the total X and Y componeuts of the target position as shown in
figure 6.1, are computed in steps 6 and 7., A special condition for a 90~
degree corrected elevation angle is provided in steps 8 and 9., For all
other cases, the corrected elevation angle and corrected distance are

computed from the simple trigonometric relationships shown in steps 12 and .

14, Default conditions are set for these calculations to rrevent real
precision overflows at elevation angles approaching 90 degrees, The
program then returns to the main executive subroutine,

DEG

Neon=180/PI
Pit=Pit*Dcon
Bit=Bit*Dcon
Ei=Ei®*Dcon
Dx=Ri*SIN(Pit)
Dy=Ri*COS(Pit)-Ro
IF Dx<>0 THEN 11
El¢=90

GOTO 14

DEFAULT ON

12. E1lc¢=ATN(Dy/Dx)
13, DEFAULT OFF

14, Dc=SQR(Dx*#2+Dy**2)
15. RETURN

® & & s o e & o
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I. Subroutine Print: Subroutine Print causes the various input and output
parametérs to be displayed or printed. The format of the display is given

in the Program Operation section, and is therefore omitted here to avoid
duplication,

Program Operation

The gradient refraction program is a subprogram of GEOD, When GEOD. is run, the
operator is asked to select the units and datum/spheroid reference applicable
to the computations to be performed., After these sc¢lections are made, the .
master menu selection is displayed. One of the menu items is GRADIENT

REFRACTION. The operator makes the appropriate numerical entry and the main
program calls subprogram Gdref,

Upon entry into Gdref, the operator is prompted to make .several simple .
selections,

A. Output device selection
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B.

SELECT OUTPUT DEVICE

CRT
THERMAL PRINTER

0
1
2 = LINE PRINTER

Tracking sitc selection

SELECT TRACKING SITE

JSC- MODEL
FPS-16 (34)
FPS~16 (38)
FPS-16 (41)

ELY HAIR SYSTEM
MANUAL ENTRY .

" ER R RB

N B W=

At this point the operator will select.a prestored site or manual entry.
If a manual entry is used, the program will sequentially ask for site
latitude, site longitude, and site spheroid elevation., The latitude
parameter is used to compute an average earth radius for the localée of the
tracking site. This earth radius is then increased by the amount of the
site’'s spheroid elevation, and the combined radius becomes the reference

value (Ro) used in the refraction equatious.
Entry of refractivity and scale height values
The operator is next asked to select between entry of a single station
refractivity value or two values from sites at different elevations, This
option was added to the program to permit refractivity taken at any one of
the local radar sites to be used in conjunction with refractivity values
obtained by telemetry from the weather station at Sentinel Peak (or at
other similar future sites). The operator is prompted as follows:

MAKE SELECTION

0 = ENTRY OF SINGLE REFRACTIVITY VALUE
1 = ENTRY OF TWO REFRACTIVITY VALUES (COMPUTE SCALE HEIGHT)

If 0 is selected, the operator is asked to enter the value of station

refractivity to be used, If 1 is selected, the operator is sequentially
prompted as follows:

ENTER VALUE OF LOWER ELEVATION STATION REFRACTIVITY

ENTER LOWER S$TATION ELEVATION IN METERS
ENTER VALUE GF HIGHER ELEVATION STATION REFRACTIVITY

ENTER HIGHER STATION ELEVATION IN METERS
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The program uses the two values of refractivit
¢levations to ¢énloulate the scale height to he
follow, The pProgram then proceeds to step D below.

y and the two station

Had 0 been sclected, the operator would h
respond to the follOwing prompt messages:

ENTER VALUE OF STATION. REFRACTIVITY

IF MEASUREMENT STATION IS SAME AS TRACKING SITE PRESS CONT
IF MEASUREMENT STATION IS DIFFERENT ENTER ELEVATION IN (METERS)

The parentheses above indicate that the length units requested will be
those selected by the operator at program initialization,

The following s¢lection would then be required:

MAKE SELECTION

0 = COMPUTE SCALE HEIGHT FROM REGRESSION EQ
1 = MANUAL ENTRY OF SCALE HEIGHT TO RE USED
2 =

FRECOMPUTED (STORED) VALUE OF SCALE.HEIGHT TO BE USED

Incremental .mode selection

At this point the operator is asked to. select from sevecral inc- smen.el
modes that are available for computations,

MAKE SELECTION

0 = HIGH ACCURACY MCDE (EXTREME ACCURACY BY LOW SPEED) :

1 = VARIABLE INTERVAL (HI ACC AT LOW ANGLES BUT FASTER AT HI ANGLES)
2 = MODERATE SPEED SOLUTION (2 TIMES FASTER THAN MODE 0)

3 = HIGH SPEED SOLUTION (5 TIMES FASTER THAN MODE 0)

4 = VERY HIGH SPEED SOLUTION (10 TIMES FASTER THAN MODE.0)

5 = EXTREME SPEED SOLUTION (25 TIMES FASTER THAN MODE "0)

6 = ULTRA SPEED SOLUTION . (100 TIMES FASTER THAN MODE 0)

Only mode 0 retains full accuracy. All other solutions sacrifice varying
degrees of accuracy for speed, Generally, for baseline work, mode 0 would

be selecteu., For faster response or real-time applications, one of the

other modes would be used, with the specific selection depending on the

speed of the processor and the time available within +ha £eal-tim

avaifl ¢ad real S program,
Eniry 6f measured vaiues
At this point, the

values, The follow
operator responds t

program is re¢ady to accept keybOard-cntered~measurément
ing prompt messages appear sequentially on the CRT. The
© each by entering the appropriate values,
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F.

ENTER VALUE. OF E- MEASURED IN DEGREES
ENTER VALUE OF R MEASURED IN (METERS)

The parentheses indicate that the range data will be requested in the
current)y sélcoted units, Howover, once entered, the input units are
vonvestod to radians and meters for use in the iteration sequence.

Output

When the iterations have been completed, the values of bending angle,
central .angle, and the magnitude of the final radius vector are used to
compute corrected ¢levation, corrected range, and target altitude above sea
level. These are displayed as:

SI, REFRACTIVITY .0002800

MEAS REFRACTIVITY ,0002513

SITE REFRACTIVITY .0002513

SCALE HEIGHT 7515,0531 METERS

ELEV MEASURED .3160 DEGREES

RANGE MEASURED 146400,.93 METERS

CORRECTED EL .1703 DEGREES

CORRECTED RNG 146364 ,04 METERS

TARGET ALTITUDE 2934 METERS ]

NO ITERATIONS 186

CENTRAL ANGLE 1.3211 DEGREES

BENDING ANGLE 0.2800 DEGREES

IMPINGING ANGLE 1.3570 DEGREES

]

After the results have been printed on the output device, pressing CONT ]
will return the program to the entry point so that the néext set of
refraction data can be entered.

Program Validation

To validate the computational accuracy of the gradient refraction solution, i
results were compared with those from the JSC ray-tracing program described in ?

reference 9. It should b¢ noted that the JSC results werée. obtained on a CDC
Cyber 74 computer using double precision (28 decimal digits). In those ’
computations, 50,000 iterations were used for measured elevation angles of less ‘
than 0.5 2c¢gree, 5000 iterations were used for measured elevation angles from

0.5 to 2.5 degrees, and 500 iterations were used for higher elevation angles,

The solution was based on a Snell's Law approach.

s
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In general, the gradient refraction solutions agree with the JSC results to
within approximatley one or two ten—-thousandths of a degree in angle and one or
3 two hundredths of a meter in range., Actual comparison values for elevation

A angles of 0, 20, 45, and 90 degrees, and ranges from 10 to 15,000,000 meters

. are presented in tables 6.3 to 6.6.

e

r
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TABLE 6.3,

COMPARISON OF JSC AND GMD RANGE AND ELEVATION VALUES

FOR ELEVATION ANGLE OF 0 DEGREES

(No.= 0.000386, Ro = 6378166 méters)

R measured, JSC Ele, GMD Elc, JSC De, GMD Dc,

m. deg deg m m
15,048,27 -0.0295 -0,0293 15,042 .46 15,042 .47
67,152.73 -0,1308 -0,1309 67,127.06 67,127,06

105,826 .84. -0.2043 -0,2042 105,786 .97 105,786..96
148,875.73 -0,2834 -0.2833. 148,820.,92 148,820.92
208,511.69 -0,3864 -0,3864 208,438,28. 208,438,28
321,912.52 ~0.5549 -0.5549 . 321,812.18 321,812.18
442,467 .95 ~-0.6906 -0.6904 442,351.,26 442,351,217
603,994 .40 -0.811% -0.8118 603,268.82 603,868,.83
910,793.,99 =-0.9322. -0.9322 910,663.72 910,663.73
1,250,390,50 -0,9970 ~0.9970 1,250,258,08 1,250,258.09
1,730,424.76 -1.,0452 -1.0452 1,730,290.74 1,730,290.75
2,698,884 .88 -1,0903 -1.,0903 2,698,749,38 2,698,749.37
3,835,186.,08 -1.1142 -1.1142 3,835,049,78 3,835,049,77
15,214,630,95% -1.1566 ~-1.1566 15,214,493 .25 15,214,493 ,06*

* Total JSC iterations — 50,000,

TABLE 6.4,

Total GMD iterations ~ 3028

COMPARISON OF JSC AND GMD RANGE AND ELEVATION VALUES

FOR ELEVATION ANGLE OF 20 DEGREES

(No.= 0,000386, Ro = 6378166 meters)

R measured, JSC Elgc, GMD Elc, JSC D¢, GMD De¢,
m deg deg m m

29,25 19.9999 20,0000 29.24 29,24
584 .94 19,9989 19,9992 584.72 584,72
1,462.19 19.9974 19,9976 1,461,.65 1,461.65
2,923.82 19,9949 19,9953 2,922,179 2,922.79
5,845.,29 19,9904 19,9907 5,843.39 5,843.39
14,594 .01 19,9795 19,9798 . 14,590.28 14,590,28
29,116.97 19.9678 19,9679 29,111.71 29,111.71
57,926 .86 19.9561 19.9562. . 57,920,73 57,920,71
142,482 .17 19,9465 19.9466 142 .475.86 142 ,475.86
277,7583.94 19,9432 19,9433 277,747 .63 277,747 .63
530,838.77 19,9415 19.9417 530,832.46 530,832.47
1,195,203.99 19,9408 19,9407 1,195,197 .68 1,195,197.69
2,124,555.53 19.9401 i$.9403 2,124,549,23 2,124,549,23
13,066,065.17 19,9397 19,9399 . . 13,066,058.87 13,066,058.87
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TABLE 6.5. COMPARISON OF JSC AND GMD RANGE AND ELEVATION VALUELS
FOR ELEVATION ANGLE OF 45 DEGREES

(No # 0,000386, Ro = 6378166 meters)

R measured, JSC El¢, GMD Elg, JSC De, GMD De,
m deg deg m . m
14.15 45,0000 44,9999 14,14 14 .14
282,95 44,9996 44,9998 282 .84 282 .84
707 .35 44,9990 . 44,9993 707 .09 707 .09
1,414.65 44,9981 44,9984 1,414.15 1,414.,15
2,829,08 44,9965 - 44,9967 2,828,16 2,828.16
7,071,03 44,9925 44,9927 7,069,22 7,069,22
14,136,522 44,9882 44,9884 14,133.98 14,133.99
28,251.04 44,9840 44,9841 28,248.06 28,248,08
70,464 .56 44.9804 . 44,9805 70,461.50. 70,461,52
140,398,84 44,9792 44,9792 140,395.77 140,395.77
278,769,33 44,9786 44,9786 278,766.27 278,766.26
683,321.00 44,9782 44,9784 683,317.94 683,317.95
1,329,601,05 44,9781 44,9783 1,329,597.99 1,329,598.00
11,236,158.88 44,9780 44,9783 11,236,155.82 11,236,155.63
TABLE 6.6. COMPARISON OF JSC AND GMD RANGE AND KLEVATION VALUES

FOR ELEVATION ANGLE OF 90 DEGREES

(No = 0.000386, Ro = 6378166 meters)

R measured, JSC Elg¢, GMD Elc, JSC D¢, GMD D¢,
m deg deg m m
10,00 90.0000 90,0000 10.00 10.00
200,08 90.0000 90.0000 200.00 200.00 i
500.18 90.0000 90.0000 500.00 500,00
1,000.35 90.0000 90.0000 1,000.00 1,000,00 i
2,000,65 90.0000 90.0000 2,000,00 2,000,00
5,001.28 90,0000 90.009%0 §,000,00 5,000,00
10,001,.80 90.0000 90.0000 10,000,00 10,000.00.
20,002.65 90.0000 90.0000 20,000,00 20,000,00
50,002,17¢ 90,0900 90.0000 50,000.00 50,000,00
100,002.17+ 90.0000 90,0000 100,000,00 100,000,00
200,002 .17+ 90.0000 90,0000 200,000,00 200,000,01 v
500.002.17' 90.0000 90.0000 500,000.00 500,000,02 ;
1,000,002 ,17 90.0000 90.0000 1,000,000.00 1,000,000,04
10,000,002,17¢ 90.0000 90,0000 10,000,000.00 10,000,000.10 {

* The JSC atmosphere is terminated at SO kilometers whereas the expon-
ential atmosphere used in the GMD.solution continues to exist in minor ‘
amounts above the S0-kilometer level.
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- CHAPTER 7

DATUM CONVERSIONS AND GENERATION OF DATA SHEETS

This chapter deals with the calculation of coordinate data with respect to any
» of the spheroid/datum models contained in the program.. It also describes the
A program used to prepare horizontal control data sheets for survey points,

calibration points, runway endpoints, and other locations in. the. Edwards
horizontal control network,

Datum Conversion Theory

The orientation of a rigid body is defined by six quantities: three linear
translational quantities and three angular or rotational quantities. If the
rigid body is the earth spheroid, then two additional quantities are also
required to establish the spheroid position of any surface point. However, by
using suitable datum definitions, this number can be reduced. For example, if
the axes of the spheroid are defined to be parallel to the earth's axis of
rotation and to the meridian of Greenwich, then only five constants need be
given,

In this document, all datums are referénced to WGS-72 and are considered to
have their coordinate frames aligned with, although spatially offset from, the
WGS=72 E~F~G triad. Recent satellite data indicate that some small
discrepancies exist in the alignments of coordinate axes, especially with the
older datums, However, for aerodynamic tracking applications, it is common
practice to assume that alignment errors between the newer datums are small
enough that only the translational corrections need be considered.

In the datum conversion program, thée position of & starting point is
established by knowing its latitude, longitude and spheroid elevation in a
given spheroid/datum ré¢ference. Knowing the spheroid parameters, the E-F-G
coordinates of the point can be.e¢asily computed with respect to the same datum
reference. Next, three translational c¢orrections (du2, dv2, dw2) between the
new datum and the WGS-72 origin are subtracted from the three translational
corrections (dul, dul, dwl) between the original datum and the WGS-72 origin to
obtain the translational correctioms (du, dv, dw) between the original and new
datums. Thesé¢ corrections are applied to the E-F-G coordinates relative to the
original datum to obtain the E-F~G ¢oordinates of the point in the new datum
(E2 = E1 + du, F2 = F1 + dv, G2 = G1 + dw), Finally, the latitude, longitude,
and sphéroid elevation 6f the point in the new datum are obtained using any one
of the four of f~-spheroid ¢oordinate determination programs described in

chapter §.

Again, it should be emphasized that the simple addition of translational
elements neglects any minor tilt which may exist between the datums., However,
since it is the common practice among range groups to use only the
translational terms, this procedurée has beén followed in the baseline
algorithms so that thé results will agree with DMAC and USCGS data.
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Datum Conversion Program

Variable_Names
Name Description
Aa Length of semimajor axis of selectcd reference spheroid
Bb Length of semiminor axis of selected reference spheroid
D1 Number used to identify the starting datum
D2 Number used. to identify the ending datum .
Du Combined E translation from starting to ending datum
Dul E translational component of starting datum
Du2 E translational component of ending datum
Dv Combined F translation from starting to ending datum
Dvl F translational c¢omponent of starting datum
Dv2 . F translational ¢omponent of ending datum
Dw Combined G translation from starting to ending datum
Dwl G translational component of starting datum
Dw2 G translational component of ending datum
EO1 E value of point in starting datum
E2 ~Square of the eccentricity of the reference spheroid
Ee Eccentricity of the reference spheroid
En Normalized E vector used in Lagrange solution
FO1 F value of point in starting datum
Go1 G value of point in Starting datum

e
»
LS

Computational Algorithms ‘

A, Datumconv subroutine: The Datumconv subroutine is the major executive .
subroutine containing the datum conversion algorithms and calls,
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- Datumconv: |

1.

: 2. Call Spher(D1,Aa,Bb,E2,Ee,Dul,Dv1,Dwl)
3 3. GOSUB Uwhtoefg
3 4, Call Spher(D2,Aa,Bb,E2,Ee,Du2,Dv2,Dw2)
. 5. Du#Dul=Du2

~ 6. Dv=Dvi-Dv2
. 7. Dw=Dwl-Dw2
L 8. EO1=E

g 9. FOLSF.

: 10. GO1=G

11, En=(E01+Du)/Aa. ..’
12, Fn=(F01+Dv)/Aa
, 13, Gn=(G01+Dw)/Aa
14, .GOSUB Lagrangeterm
15, END

B. Subroutine Spher: Subroutine Spher is used to obtain the parameters for
the selected spheroid datum. An index number D10(i) indicates the .datum
number., The other terms in the calling argument are length of the.
semimajor axis, length of the semiminor axis, eccentricity squared,
eccentricity, and the three delta vectors,

C. Subroutine Lagrangeterm: Subroutine Lagrangeterm accepts the normalized E,
F, and G coordinates of the target point in the selected spheroid/datum
model and returns the latitude, longitude, and spheroid elevation of the.
point, This subroutine is fully covered in chapter 5.

Program Operation

The datum conversion routines are a subroutine of GEOD. When GEOD is run, the
operator selects DATUM CONVERSION during program initialization. The following
display sequence prompts the operator in making the necessary inputs.

A, Output device selection

SELECT OUTPUT DEVICE

CRT
THERMAL PRINTER .
LINE PRINTER

nnon

0
1
2

B. Datum selection




C,

DQ .

SELECT STARTING DATUM

1 = NAD 1927/CLARKE 1866 4 = WGS-72

2 = MERCURY/FISHER 1960 5 = MERCURY/FISHER 1968 —
3 = KAULA 1961 6 = NWL~-8E

7 = ADINDAN/CLARKE 1880 21 = SAO-66

8 = ASCENSION (ASTRO-58)/ININL .22 = SA0-67

9 = AUSTRALIAN NATIONAL 23 = SA0-69
10 = CANTON IS (ASTRO-66) /INTNL 24 = SA0-73

11 = EUROPEAN (ed)/ININL 25 = S AFRICAN 1950/CLARKE 1880
12 = GREAT BRITAIN 1936/AIRY 26- = SOUTH AMERICAN 1969

13 = GUAM 1963/CLARKE 1886 27 = SOUTH AFRICAN/FISHER 1960
14 = INDIAN (id)/EVEREST 28 = TOKYO (TD)/BESSEL 1841

15 = JOHNSON IS (ASTRO-61) /ININL 29 = VANGUARD/HOUGH

16 = NANKING 196 0/ INTNL 30 = WAKE IS (ASTRO-52)/HOUGH
17 = GEM-6 31 = WAKE-ENIWETOK 196 0/ HOUGH
18 = NWL-9C 32 = WGS-60

19 = NWL-9D 33 = WG*-66

20 = OLD HAWAIIAN (OHD)/CLARKE 1966

The operator makes the appropriate numerical entry and presses CONT. The
program .then displays

SELECT ENDING DATUM.

along with the same menu of datum/spheroid models. Again the operator .
makes the appropriate numerical entry and presses CONT,

Fntry of coordinates of point to be converted
ENTER (CLARKE 1866) COORDINATES
ENTER GEODETIC LAT AS D.MS (EG. 35 43 24.6789 = 35,43246789)
ENTER GEODETIC LON AS D.MS (EG. 117 54 38,1243 = 117.54381243)

ENTER ELEV ABOVE SPHEROID IN (METERS)

The items in parentheses will vary depending on.the operator selections of

starting datum and engine¢ering unmits,

Output

DATUM: (MERCURY) EARTH MODEL: (FISHER 1960)

GEODETIC LATITUDE
GEODETIC LONGITUDE
SPHEROID ELEVATION

34 57 39,4537  (34.96095937) ( 0.610183851)
117 54 40.0495 (117.91112486) ( 2.057937354)
796.04 METERS

mon i
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Progrom Validation

o Validation of the datum conversion subroutines is accomplished by comparing

;- computed results with those available from DMAC, USCGS, or NASA publications,

' Computed results for the various datum/spheroid models are provided in table ___
7.1 for a point at 35 N and 118 ¥W.in the Clurke/NAD model.

Lr TABLE 7.1. COMPARISON OF CLARKE 1866/NAD AND OTHER .DATUM COORDINATES

i' (Clarke coordinates of point are 33 N, 118 W, and H = 500 meters)

' Latitud 1 d S d

, : . atitude, ongitude, pheroid elev,

i Datum/Spheroid dem—s domes o

i Clarke 1866/NAD 35 00 00.0000 118 00 00.0000 500.00
Mercury/Fisher 60 . 35 00 00.4945 . 118 00 01,9504 508.95
Kaula/Kaula 61 35 00 00.0056 118 00 03.4295 480 .89
WGS-72 34 .59 59.8136 118 00 03.6724 489,09
Mercury/Fisher 68 34 59 59.7516 118 00 03.3110 .. 484,32
NWL-8E 35 00 00,0997 118 00 03.7443 483 .44
Adindan/Clarke 1880 35 00 06.5875 117 59 58.8616 280,91 .
Ascension/Intnl 35 00 01.7011 117 59 54.5370 222.14
Australian Natl 34 59 57.6970 118 00 00.1838 304.04.
Canton Is/Intnl. . 35 00 14.8609 118 00 19.2199 392 .61
European/Intnl 35 00 08.4047 118.00 02,6547 232,20 . - -
Great Britain/Airy 34 59 44,9009 118 00 18.7063 846 .15
Guam/Clarke 1866 35 00 04.9542. 118 00 04,9244 145.98
Indian/Everest 34 59 34,0183 117 59 56 .5673 1741.11
Johnston Is/Intnl 35 00 07.5024 118 00 11,449% 418.35
Nanking 60/Intnl 35 00 09,7887 118 .00 06.0328 -10.01
GEM-6 35 00 00.1463 118 00 03.7095 485.04.
NWL-9C 34 59 59,8031 118 00 03.9324 484 .29
NWL~-9D 34 59 59.7834 118 00 03.6125 486 .89
01d Hawaiian/Cl 1866 35 00 16.0369 118 00 10,6210 430.54
SAQ0-66 34 .59 59,6864 118 00 03.8584 466 .06
SA0-67 34 59 59,9965 118 00 03.7747 490,36
SAO-69 34 59 59,8593 118 00 03.7725 492,02
SA0~73 34 59 59.6949 118 00 03.9302 489 .83
$ African/Clarke 1880 35 00 16.9365 117 59 56.7560 696.68
S American 69 35 00 26.1387 118 00 00.9360 726..92
S Asia/Fisher 60 35 00 00.9467 118 00 05.5329 429.74 .
Tokyo/Bessel 1841 34 56 32,6510 117 59 49,2464 1138.55
Vanguard/Hough 35 00 00.4042 117 59 59.9423 499.43
¥Wake Is/Hough . 34 59 57.1048. 118 00 14,3399 262.30
Wake-Eniwetok 60 35 00 01,6636 118 00 06.3129 501.51 e

. wGS-60 34 59 59.9382 118 00 04.1104 5§10.00 ,

WGS-66 35 00 00,0887 118 00 03.6865 489.16 !
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Data Sheet Preparation

The. data sheet subroutine is simply an executive program that sequentially
calls the various other subroutines and subprograms previously described, For
this reason, the coding of the individual subroutines is not repcated here.
However, the general sequence of operations and the operating instructions.are
provided.

The data sheet subroutine is intended .to prepare (RT or hardeopy listings of
horizontal control data referenced to any of the many control points generally
used by the ATR., The program is designed to accept a manually entered control
point or to sequentially read each control point from a mastér survey file. Inm
either case, the-geodetic latitude and longitude of the point must be entered
or read in Clarke 1866/NAD coordinates.

The. program then provides an output listing which consists of the name of the
station (if named), the NAD coordinates of the point in dms, deg, and radian
formats, the Califormnia zone 5 and zone 7 Lambert coordinates of . the point, and
the NAD E-F-G coordinates of the point,

Next, depending on .the operator selection, the program will display or print
the geodetic and E-F-G coordinates of the point in other selected datums.

Also, if selected by the operator, the program will display or print the range,
azimuth, and elevation to all nearby survey points. This can be in either of
two operator-selectable formats which are described in the program operation
section below. . i

Tn making the neceéssary computations, the program makes use of the Lambert

subroutines, the E~F-G subroutines, the datum conversion subroutines, and the:
various angle and distance routines described in earlier chapters.,

Program Operation

Upon entry into GEOD, the operator is asked to select the operating mode. To
prepare a data sheet the operator enters the number corresponding to DATA !
SHEET. The rémaining operator entriés are shown below. ]
A. Output device selection

SELECT OUTPUT DEVICE

0 = CRT i
1 = THERMAL PRINTER
2 = LINE PRINTER
[4
B. Station selection 3
1
0 = MANUAL ENTRY OF STATION
1. = AUTOMATIC ENTRY (ALL STATIONS)
2 = ENTRY OF FILE STATION
7-6
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If manual entry is selected, the following operator inputs are roquested:
ENTER STATION NAME
ENTER STATION NAD.LATITUDE IN D.MS FORM
ENTER STATION NAD.LONGITUDE IN D,MS.FORM
ENTER ELEVATION ABOVE SEA LEVEL IN (METERS)
ENTER GEOID SEPARATION IN (METERS)

If automatic entry is selected, the program sequentially reads one station.

afier another from the survey file and preparés a separate horizontal data
sheet for each station,

If the entry is to be a single file station, the program requests the
following from the operator:

ENTER RECORD NUMBER
ENTER FILE NUMBER

This request refers to the record and file numbers shown when SURVEY DATA

is selected and the survey data are printed during the initial program mode
selection,

Datum conversions

The progrem next prompts the Op¢rator to ¢nter the number of additional
datums in which the coordinates are to be shown on the data sheet, If only
Clarke/NAD coordinates are desired, the operator simply presses CONT. If
the coordinates are to be shown in other datums, the operator enters the

number of additional datums for which coordinates aré to be shown., The
program then asks thé operator to

SELECT ADDITIONAL DATUM
and displays the menu on which all. the datums are listed., This display is
repeated the number of times corresponding to the number of additional
datums previously specified by the operator,

Range, azimuth, and elevation to nearby points

The program operator is now asked to choos¢ on¢ of thé two options in the
following CRT message:

0 = NO ANGLE AND RANGE DATA FOR NEARBY SURVEY POINTS
1 = INCLUDE ANGLE AND RANGE DATA FOR NEARBY SURVEY POINTS.

When 0 is selected (or. CONT is deépressed without a numerical entry), the
data sheets are prepared without angle and fange data for nearby survey.
points. When 1.is sélected, the program displays the following request,
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. SELECT RANGE AND ANGLE FORMAT

. 0 = ANGLES IN D.MS FORMAT - RANGE IN METERS
1 = ANGLES IN DEG - RANGE IN METERS. AND YARDS

E. Program Output

o A typical horizontal control data form for FPS-16 number 34 is shown below:

T




; HORIZONTAL CONTROL DATA
' NAME OF STATION: [PS-16 NO. 34

CLARKE 1866 (NORTH AMERICAN (NAD-27)) COORDINATES ARE:

:‘ GEODETIC LATITUDE = 34 37 38,9531 (. 34,96082031) (0.610181424)
8 GEODETIC LONGITUDE = 117 54 38,1062 (117.91058506) {2.057927932)
b ELEVATION ABOVE SEA LEVEL: 811,566 METERS ( 2633.613 FEET)

GEOD SEPARATION: -24.400 METERS ( =-80.052 FEET)
: SPHEROID ELEVATION: 787.166 METERS .( 2582.560 FEET)

CAL ZONE 5 LAMBERT CRD: X 617,767.24 METERS Y
2,026,791.36 FEET
1,314,721,03 METERS . Y
4,313,330.58 FEET
CLARKE 1866 (NORTH AMERICAN (NAD-27)) EFG COORD:

E = -2449851.59 M F = -4624848,18 M G

162,041,17 METERS
531,630,07 FEET
1,360,127 .46 METERS

4,462,351.52 FEET

CAL ZONE 7 LAMBERT CRD: X

e n
nnnn

n

3634568.77T M

FISHER 1960 (MERCURY) EFG COORD:
E = -2449848.59 M F = -4624787.18 M G
FISHER 1960 (MERCURY) GEODETIC COORD:
GEODETIC LATITUDE 34 57 39.4537 ( 34,96095937) (0.610183851)
GEODETIC LONGITUDE = 117 54 40.0495 (117.,91112486) (2,057937354)

3634793 .77 M

SPHEROID ELEVATION: 796 .04 METERS
KAULA 1961 (KAULA 1961) EFG CCORD:
E = -2449874.59 M F = -4624756.18 M G = 3634764.77T M
XAULA 1961 (KAULA 1961) GEODETIC COORD:
GEODETIC LATITUDE = 34 57 38.9654 ( 34,96082371) (0.610181483)
GEODETIC LONGITUDE = 117 54 41.5269 (117,91153525) (2.057944516)
SPHEROID ELEZVATION: 767 .95 METERS
FPS-16 NO 34
RANGE, AZIMUTH, AND ELEVATION OF NEARBY SURVEY POINTS
DESCRIPTION OF POINT AZIMUTH ELEVATION RANGE
BST 34 BRASS DISC 202 33 28.1 -2 50.22.2 675.11 METERS
BST 34 FEED HORN 202.41 17.6 0 50 39.8 674 .36 METERS :
MASTER NORTH. BASE 175 53 51.0 -1 21 12,1 1631,24 METERS 1
MASTER SOUTH BASE 144 54 31,0 -1 15 41,4 5284.46 METERS i
NASA 1 - 120 03 02.0 -2 43 35.4 2311,31 METERS 1
-
and so forth until all points have béen shown ’

The above sample shows the output format when O is entered for range and angle
format in stéep D above., Had 1 been entéred, the format of the range and angle
data would have been:
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FPS-16 NO 34
RANGE, AZIMUTH, AND ELEVATION OF NEARBY SURVEY POINTS

B DESCRIPTION OF POINT AZIMUTH .  FLEVATION RANGE (M)  RANGE (D)

ry BST 34 BRASS DISC 202,5578 -2 .8395. 675,11 738,31 .

) BST 34 FEED HORN - 202,6882 0.8444 . 674.36 737.48 . ..

L MASTER NORTH BASE 175.8975 -1.3534 1631.24 1783.95
MASTER SOUTH BASE 144,9086. ~-1,2613 5284.46 5779.14
NASA 1 120.0506 ~-2,7265 2311.31  2527.67

‘ and .so forth until all points have been shown

Program Validation

Since the data sheet subprogram uses subroutines from other parts of the main
program, it suffices to validate individual results obtained on the data sheets
using the validation procedures for the individual subroutines. These
validation procedures are contained in the sections describing the individual

subroutines.
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CHAPTER 8
RADAR CROSS SECTIONS.AND ANTENNA GAIN PATTERNS

The radar cross section and antenna pattern coverage calculations are designed
to us¢ both ground-derived and air-derived data to compute target radar cross
sections or antenna coverage patterns.. Generally, all necessary data can be
obtained from a single flight if the air¢raft maneuvers are designed so that a
wide range of aspect angles are obtained.

Radar Cross Section Calculations

To compute radar cross section ar ~ function of the impinging angle of the r—f
energy on the body axis triad, it is necessary to time correlate body axis
data, radar receiver i~f signal levels, and tracking measurements (RAE), It is
helpful if the radar system is capable of generating a time-tagged analog (duo-
binary) or digital recording of the five radar parameters (time, range,
azimuth, elevation, and received signal-to-noise ratio) needed for the
analysis, Body axis data, obtained from a stable platform on board the test
aircraft, is either transmitted to the ground in real-time or recorded on board
for post mission analysis.

This. program is not concernéd with the manner in which the data was obtaiaed
(direct input from digital recordings or manual input from listings or
stripchart recordings)., Tt assumes that data from the necessary sources has
been entered onto a digital magnetic tape in a format which can be used by the
data reduction program,

The following sequence of operations are carried out by the program on data’
points recorded at 1 second intervals:

1, The aircraft’'s spatial position is converted from spherical R-A-E
coordinates into radar-centered, E~N-V Cartesian form, This is
accomplished by calling subroutine Raexyz (fig. 8.1).

2. The E-N-V cartesian coordinates are rotated into alignment with the earth—
centered E-F-G Cartesian frame. This is accomplished by calling
subrouting Xyzefg (fig. 8.2).

3. The aircraft position is translated to the E-F~G frame. This is
accomplished by simple vector addition (fig. 8,3).

4, The.AErAF-AG vector from the ajircraft to the radar is computed from
the known E-F-G coordinates of the radar site and the computed E-F-G
coordinates of the aircraft (fig. 8.4).

5. The geodetic coordinates of the aircraft are computed from its E-F-G
coordinates. This is accomplished by the method of Purcell and Cowan
which is fully covered in Chapteér §.
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6.  The AE-AF—~AG coordinates of the radar position vector roferenced to the
aircraft centured, E-F-G-aligned triad are rotated to the aircraft~
centered E~N-V frame (fig. 8.4),

7. The L~N-V. coordinates of the radar position vector are rotated through
the body-axis Euler angles to obtain the radar position with respect to
the body axes of the aircraft, This is accomplished by means of a
standard three-coordinate matrix rotation in which the direction
cosines are computed from the three Euler angles describing the pitch,
roll, and heading of the vehicle at that same moment in time.

8. Finally, the radar’s Cartesian coordinates, referenced to the aircraft
body axes, are converted into spherical form (rangeé-azimuth—elevation)
referenced to the same aircraft frame.

This provides the impinging angle of the r-f energy with réspect to the aircraft
body axes at one second intervals throughout the test period. To obtain a

value for radar cross séction that corrésponds to this impinging angle, radar
range values for the same time-correlated, one-second intervals are combined
with known radar parameters in the logarithmic form of the classical radar
equation,

[6] = 4[R] + [B] + [NF] + [L] - [Pt] - 2[A] - 2[G] + [S/NI. (8.1)

Here o is the radar cross section in décibels referenced to 1 square meter, R
is the range in decibels referenced to. 1 nautical mile, B is the noise
bandwidth of the intermediate-frequency amplifier of the radar in decibels
referenced to 1 hertz, L is the transmitting and receiving line losses in
decibels, NF is the operating noise figure .of the radar in decibels, Pt is the
peak transmitted power in decibels referenced to 1 watt, A is the transmitted.
wave length referenced to 1 em, G is the antenna gain over isotropic gain in
decibels, and S/N is the ratio of réceiver signal power to noise power in

decibels. In equation (8.1), decibel values are used for all terms in the
square brackeéts.

The various radar<dependent paxameters used in equation (8.1) are determined
from calibrated sphere tracks, Typical values recently computed for the DFRC
AN/FPS~16 radar are:

1. B - 62 dBHz
2, NF - 11,2 dB
3, L-5.54adB
4, A& = 7.243 dBcem
5. G- 42.54dB
Transmitted power is géenerally meesured from a calibrated power metér on the

radar ¢onsole, Oné hundred percent powér for AN/FPS-16 number 34 is 60 dBW.
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In this program, the value of o computed from oquation {(8.1) is stored

along with the threc hody axis angles for the impinging sipnal at cach data
point, A plotting subroutine allows the.value of o to be plotted as a function
of time of ns a function of body azimuth angle for a selccted eélevatian window,

Antenna Gain Pottern

To compute antenna grin as a function of impinging angle of the r-f energy on
the body axis triad, it is again neeessary to time correlate signal levels at
the receiving system detector output with both body axis angles and precision
tracking data., The ground station may either be a transmitter (if the .antenna
pattern of the on-boacd receiver is to be measured) or a receiver (if the
antenna pattern of the on-board transmitter is to be measured). This type of
calculation provides general antenna pattern information for lin¢~of-sight type
high-frequency signals (VHF and higher) only,

During a receiving antenna test, 8 cortinuous signal is transmitted .from the
ground station by means of a directional antenna slaved to a precision tracking
source, The signal level at the detector output of the on-board receiver is
recorded along with body axis information and timing data. During a
transmitting antenna test, a continuous signal is transmitted from. the flight
vehicle and received by a directional antenna slaved to a precision tracking
source., The received signal level is recorded at the receiving site for

subsequent time base correlation with recorded tracking data and body axis
information,

To perform the analysis, the same sequence of operations is used as described
above for determining the angle of impingement (for ground-to-air

transmission), or departure (for air-to—-ground) transmission.. In the case of
ground-to=air checks, the gain of the on~board recéiving antenna is computed

for each 1-second data point by using a rearranged version of the standard
transmission formula,

[Gra] = [S/N] - [Ptmw] - [Gg] + [P1] + [Lt] : [Lr] - [Rs] (8.2)

where [Gral is the gain of the airborne anteunsa (dB) for the instantaneous
aspect angle of the received r-f energy, [Ptmw] is the transmitted power (dBmW),
[Ggl is the gain of the ground antenna (dB), [P1] is the path loss (dBm), [Lt]
and [Lr] are the transmitting and receiving line¢ losses (dB),. and [Rs] is the

receiver sensitivity (dBm). In equation (8.2), decibel values must be used for
all terms in the¢ square brackets.

To determine the gain pattern of an on-board transmitter antenna, the same
procedure is followed except that the on-board transmitter is continuously
keyed while the aircraft performs planned manéuvers which will provide data for
all aspect angles of interest., In this case, the signal-to-noise level of the
received signal is measured at the ground station and recorded along with the
timing data, The equation for determining the gain pattern of the on-board
transmitting antenna is

[Gtal = [S/N] - [Ptaw] - [Gg) + [P1] + [Lt] + [Lr] - [Rs). (8.3)
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Constant values used in eque tions (8,2) and (8,3) arc system dependent and
entered into the program bv the operator priér to commencing the data roduction
operations, e, -

In both equations (8.2) and (8.3) the path loss in dB is computed from

[P1] = 10 108;«1% (8.4)

where R is the vehicle range in meters and A is the wave length of the
transmitted signal in meters.

Variable Names

Name Description

Adb . Additional losses in radar equation, decibels

Adldb Additional losses in antenna gain equation, decibels
Alt Target vehicle altitude above earth spheroid, meters
A(N,0) . N array elements holding target range values

A(N,1) N array elements holding target azimuth values
A(N,2) N array elements holding target elevation values
Bwhz Noise bandwidth, hertz

B(N,0) N array elements holding signal-to-noise values
B(N,1) . N array elements holding body azimuth values

B(N,2) N array elements holding body elevation values

B(N, 3) N array elements reséerved for parameter storage
B(N,4) N array elements holding sigma or antenna gain values
B(0,0) Array location holding tracker latitude

B(0,1) Array location holding tracker longitude

B(0,2) Array location holding tracker altitude

B(0,3) Array location holding magnetic¢ variation

B(0,4) Array location holding geoid separation at tracker
c . Geodeti¢ course of target

8-4
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Cosc
Cosp
Cesr
C(N,0)
C(N,1)
C(N,2)
C(N,3)
C(0,0)
c(o0,1)
Dualdb
D(N,0)
D(N,1)
D(N,2)
E

F

Frah

Gadb
Ggdb
Gsep
Gtdb

H

Hr
Lamdbcm
Lamdbm

Lamdbmi

BRRLL b ciiibiiiaiean L O L ok b IR AL A A r—7~~~-«m i SR LN L A AR |

Cosinc of target course angle

Cosine of target pitch angle

Cosine of target roll angle

N array elements holding target magneti¢ heading
N array elements holding target geodetic course

N array elements holding target pitch angle

N array elements holding target roll angle .
Array element holding starting time of run

Array element holding ending time of run

S/N loss due to dual mode, decibels

N array elements holding target latitude, degrees
N array eleménts holding target longitude, degrees
N array elements holding target sea~level altitude, meters
E coordinate in E~F-G frame of reference

F coordinate in E-F-G frame of reference

Radar fréquency, megahertz

G coordinate in E~F-G frame¢ of reference

Gain of airborne antenna, decibels

Gain of ground antenna, decibels

Geoid separation, meters

Gain of transmitting antenna, decibels

Altitude of target above se¢a level, meters

Hours after start of run

Wave length referenced to 1 centimeter, decibels
Wave length referenced to 1 meter, decibels

Wave length referénce to 1 nautical mile, decibels




Lan
Lam2
Lat.
Lon
Lrdb
Ltdb
Ltrdb
MAT A2
MAT E
MAT Er
MAT Ev
MAT X
MAT X1
Magvar
Matflg
Mhdg
Min
Nbwdbhz
Nfdb

p

Pit
Pldbm

Ptdbmwa

Ptdbmwg

Pldbnm

Ptdbw

Wave length in current units
Square of wave length in curreént units

Targot latitude, degrecs-

Target longitude, degrees

Receiver line losses, decibels

Transmitter line losses, decibels

Combined transmitter and receiver line losses, decibels
Matrix used to store body axis direction cosines

Generalized matrix used to store E-F-G coordinates

Matrix used to store radar E-F-G coordinates

Matrix used to store vehicle E-F-G coordinates

Generalized matrix used to store X-Y-Z coordinates

Matrix used to store vehicle-to-radar coordinates

Input parameter for magnetic variation, degrees

Flag indicating forward or reverse matrix rotation

Target magnetic heading

Minutes after start of run

Noise bandwidth referenced to 1 hertz, decibels

Radar noise figure, decibels

Working value of target pitch angle, degrees

Input target pitch parameter, degrees

Path loss computed on basis of 1 meteér, decibels

Airborne transmitter power referénced to 1 milliwatt, decibels
Ground transmitter power referenced to 1 milliwatt, decibels
Path loss referénced to.1 nautical mile, decibels

Transmitter power refereénced to 1 watt, decibels
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R Working value of target roll angle, degrees

Rol Input value of target roll angle, degrecs
Rsdb Receiver sensitivity, decibels
Rsdba Airborne receciver sensitivity, decibels
Rsdbg Ground receiver sensitivity, decibels
Sec Seconds -after start.of run
Sigma Radar cross section referenced to 1 square meter, decibels
Sinc Sine of target geodetic course
Sinp Sine of target pitch angle
Sinr Sine of target roll angle
Sar Signal t¢é noise ratio, decibels .
U - Latitude transfer variable, degrees
Var .. ... Magnetic variation, degrees.
v Longitude transfer variable, degrees
X Transfer variable for radar-centered ¢ast coordinate X
Y Transfer variable for radar-centered north coordinate ?
Z Transfer variable for radar-centered vertical coordinate
Computational Algorithms
Since all of the géodetic computations for this routine have been coveéred in

earlier chapters, they will not be repeated here. The algorithms used to
compute radar cross secti¢n and antenna gain are given below:

A. Radar cross section computation :
Radar cross section is computed from the following algorithms:
P1dbnm=10*LGT(A(N,0)/1852)

Sigma=Ltrdb+Nfdb+Nbwdbhz+4#P1dbam-2¢Lamdbem-2*Gtdb-Ptdbw+Snr+Addb ‘




Anténna gain computation
Antenna gain is computed from the following algorithms:
P1dbm=10*LGT( (4*PT*A(N,0)) **2/Lam2)
Gadb=8Snr-Ptdbmw-Ggdb+Pldbm+Ltdb+Lrdb-Rsdb

Angle calculation exécutive routine

The executive routine used to compute . the impinging angles of the r-f. cnergy
on the vehicle body is given in steps 1 to 22. In entering this

subroutine, values for pitch, roll, and coursé¢ are provided as variables P,
R, and C, respectively. Values for range, azimuth, and ¢levation are
provided as Rng, Az, and El respectively. In step 2, the range, azimuth,
and elevation coordinates of .the target are converted to Cartesian E-N-V
coordinates. Jn step 4, the E~N-V target coordinates are rotated into E-F-G
alignment., Matflg is a flag whieh controls the direction of the rotation.
When it is set equal to 1, the rotation in subroutine Xyzefg is from E-N-V to
E-F-G. When Matflg is set equal to 2, subroutine Xyzefg rotates E-F-G
coordinates .into E-N-V alignment. In step 5, the target's radar-centered E-F-G
coordinates .arée added to the radar’s earth—-centered E-F-G coordinates.to
yield the target position in the earth-centered E-F-G reference frame., In
step 9, subroutine Purcell is called to compute the target's latitude,
longitude, and elevation (Lat, Lon, and Alt) from its E-F-G coordinates. In
step 12 the spheroid altitude of the target is converted to altitude above
sea level by subtracting the geoid separation (Gsep) for the tracking site.
In step 14, the radar-to-target E-F-G coordinates are reversed to yield the
target-to-radar E-F-G coordinates, and these .are then rotated into alignment
with the E-N-V frame of reference at the position of the target aircraft,
Subroutine Bodyangles is then called to compute the direction cosines

needed to rotatée the vehicle=to~radar E-F-G coordinatés into alignment with
the vehicle body axes., This is accomplished by using the three body-axis
Euler angles P, R, and C to compute the six-dimensional rotation matrix A2.
The actual rotation is accomplished in step 17 which yields the Cartesian
coordinates of the radar site with respect to the vehicle body-axis triad.
In step 21, the radar’s Cartesian coordinates are converted to spherical.
form (body-axis azimuth, body-axis elevation, and range).

.

Compentry: |

s o .

[
OO 0O~IA W HWNE

[
[
.

12.

-y
w
.

GOSUB Raexyz
Matflg=1
GOSUB Xyzefg
MAT Ev=Er+L .
E=Ev(0)
F=Ev(1)
G=Ev(2)

GOSUB Purcell
U=Lat

W=Lon
B=Alt-Gsep
Matflg=2
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14. MAT E=E®(-1)
- 15, . GOSUB Xyzefg
. 16, GOSUB Bodyangles
: 17... MAT X1=A2%X
g 18, X=X1(0)
9 19, . Y=X1(1)
: 20, Z=X1(2)
21, GOSUB Xyzrac
- 22, RETURN

b' D. Radar cross section calculation

The Compute subroutine initializes the radar coordinatés, magnetic
, variation, and geoid separation which will be used for all of the
i subsequent calculations, In steps 2 through 6 the radar-dependent values
are picked up from the holding elements in array B. In step 7, the sea--
level altitude of the .radar is converted to spheroid altitude by addition
of the geoid separation factor (Gsep). In step 8, the program branches to
subroutine Model where the earth model parameters are assigned values.. In
step 9, the value of the E-W radius of curvature for the radar site is
computed, and, in steps 10 and 11, the earth—centered E-F-G coordinates of
the radar are computed and stored in MAT Er. Tf Opmode has a value of 4,
indicating COMPUTE A/C ANTENNA GAIN PATIERN (the fourth menu selection) had
been chosen by the operator, the program branches to the antenna gain
calcuation subroutine, Computegain. If Opmode has any other value, the
program continues with step 13 where a FOR-NEXT loop is initiated. N, the
loop index, is set to range from 1 to the maximum number of data points in
the run. The total number of data points that must be processed. is equal
to the ending time of the run in seconds (stored in C(0,1)) minus the
starting time of the run in seconds (stored in C(0,0)) plus ome. At step
14 the program branches to subroutine Init where the transfer variables for
radar-to-target range, azimuth, and elevation and the aircraft pitch, roll,
and course are se¢t equal to the proper stored array values for that second
of the test. The program then branches to the angle computation routine and
returns values for the body-referenced target-to-radar azimuth. and
elevation values and the target's geodetic coordinates for the same second.
These values are stored. in the specified holding array elements.. At step
15, tke signal-to-noise value for thé same data point is assigned to Sndb.
If the value haprens to be O, indicating that no data was taken for the
point, the program sets Sigma equal .to zero and bypasses the cross—-section
calculations. Otherwise, path loss is computed in step 19, and radar cross
section is computed in step 20. The value of radar cross section for the
data point is stored in array element B(N,4). ]

The . subroutine then réturns to the start of the loop and initializes for
the same computations on the next data point.

Compute:! N
.U=R1at=B(0,0)

¥=R1lon=B(0,1)

Ralt=RB(0,2)

Var=B(0.3)

.

W W=
-
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. Gsep=RB(0,4)

. H=Ralt+Gsep

. GOSUB Model

. -GOSUB Ncale¢

10, GOSUB Efgcalc

11,  MAT Er=R

12, 1IT Opmode=4 THEN Computegain
13,  FOR N=1 to €(0,1)~C(0,0)+1.
14, GOSUB Init

15, Sndb=B(N,0)

16. IF Sndb<>0 THEN 19

17. Sigma=0.

18, GOTO 21

19, Pldbnm=10*LGT(A(N,0)/1852)
20. Sigma=Lttdb+Nfdb+wadbhz+4‘P1dbnm*2*Lamdbcm-2*thb—Ptdbw+Sndb+Adb
21, B(N,4)=Sigma

22, NEXT N

o 00 -1

Antenna gain pattern calculation

Antenna gain calculations use the same radar and earth model
initializations as the radar cross section calculations (up through step 12
in the Compute subroutine). At step 12 in that subroutine, the program
branches to the Computegain subroutine where a similar FOR~NEXT 1loop is.
established. The same data point initialization is performed in step 3,
and the same angle values are returned. In step 4, the stored signal-to-
noise measurement for the data point is assigned to Sndb., If the value isg
0, indicating that no data was taken.for that point, the antenna gain is
set equal to zero and the program branches to step 10. If the signal-~to-
noise ratio (decibels) was other than 0, the program branches to steps 8
and 9 where the path loss and antenna gain computations are made. The
computeéd antenna gain for the data point is stored in array location
B(N,4), and the program.recycles to the beginning of the loop where it
initializes for the next data point and coptinues the same computations.

Note that the zero decibel value for the signal-to-noise ratio is used. to
detect a no-data condition, even though a valid zero valué could be
present. This causes no difficulty since the probability that the value is
precisely zero (the necessary condition for the bypass branch) . is.

exceedingly small, Should a true zero value be. present, then one invalid
data point would be obtained.

Computegain:!

FOR N=1 TO C(0,1)-C(0,0)+1

GOSUB Init

Sndb=B(N,0)

IF Sndb<>0 THEN 8

Gadb=0

GOTO 10
-P1dbm=10*LGT((4*PI*A(N,0))**2/Lam2)

00 ~1 N L bW
.

» e
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9. Gadb=Sndb~Ptdbmw
10, B(N, 4)=Gadb
11, NEXT N

Subroutine Init_

Subroutin
azimuth, an

data point for which the.ra

computed. At step

impinging angles of
vehicle's geodetic
the

the subroutine re¢

1. Rng=A(N,0)
2. Az=A(N,1)

3. F1=A(N,2)
4, P=C(N92)

5, R=C(N,3)

6. C=C(N,1)

T.. Mhdg=C(N,0)
8, H=Ralt+Gsep

9. GOSUB Compentry

10. B(N,1)=Az

11. B(N,2)=El
12. D(N,0)=U
13. D(N,1)=¥
14, D(N,2)=H
15. RETURN

Both XSECT (radar cross section
a main program GEOD2 .

the CRT.

MAKE PROGRAM SELECTION

0 =
1 =

If the operator sele
as XSECT is entered,

e Init jnitializes the trans
d elevation and vehicle pitch,

approgriate array loc
turns to.the calling program.

rngb+P1dbm~Rsdb+Ltdb+erb

for vaviables with radar Tangeé,

roll, and yaw parameters for the

dar cross section OF antenna gain value is to be

hes to Compentry where the

dy axes of the vehicle and the
These values are stored in

in step 13,

9 the subroutine branc
the r—f energy on the Yo

coordinates are computed.
ations in steps 10 through 14, and,

Program Operation

in program) and RFPL are part of

and antenna ga
the following display appears on

When Geod2 is entered,

CROSS SECTION/ANTENNA GAIN CAL CULATIONS
SKYSCKEEN

cts 0 and presses (CONT', the program enters XSECT. As soon ;

the following display appears:

-n
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MAKE MODE SELECTION

MANUAL CALCULATION OF RBODY AXIS ANGIES
ENTRY OF S/N, RAE, OR ATTITUDE DATA

. CALCULATIGN OF SIGMA FROM STORED DATA
PRINT DATA OR CALCULATED PARAMETERS
COMPUTE A/C ANTENNA GAIN PATTERN .
READ DATA FROM TAPE

STORE DATA ON TAPE

PLOT SIGMA VALUES VS..BODY ANGLES
PLOT ANTENNA GAIN VS, BODY ANGLES
PLOT SIGNAL TO NOISE VS. TIME

VoIt D WD
nrwow R BAND

| The following sections describe the prompt displays and operator responses for

i e¢ach of the operating modes.,
A. Manual calculation of body axis angles: If this mode is selected, the
program prompts the following operator entries: et e
: MAKE. SELECTION
0 = FPS-16 NUMBER 34
1 = MANUAL ENTRY

1f FPS-16 NUMBER 34 is selected, the program picks up stored values for
latitude, longitude, sea-level elevatiou, geoid separation, and magnetic
variation, If MANUAL ENTRY is selected, the operator is prompted to enter
all of the same parameteérs as: }

ENTER RADAR LATITUDE IN DEGREES

ENTER RADAR LONGITUDE IN DEGREES

ENTER SEA LEVEL ELEV OF RADAR IN METERS
ENTER GEOID SEPARATION AT RADAR IN METERS
ENTER MAGNETIC VARIATION AT RADAR IN DEGREES

This is followed by the following sequential prompts for target position
and attitude data:

ENTER TARGET RANGE IN YARDS

ENTER TARGET AZIMUTH IN DEGREES

ENTER TARGET ELEVATION IN DEGREES

ENTER TARGET PITCH ANGLE (UP IS POS)

ENTER TARGET ROLL ANGLE (RT WING UP IS POS) i
ENTER TARGET MAGNETIC HEADING . |

After making the last entry, the progrém computes the target-to-radar body
angles and the target geodetic coordinates. The results are displayed as o
follows: ’

[}
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TARGET TO RADAR RANGE (YDS) = 20031,2836
TARGET TO RADAR AZIMUTH = 268,4356
TARGET TC RADAR ELEVATION = ~-20,1274
TARGET LATITUDE = 35.,1235734235
TARGET LONGITUDE = 117.9845374294
TARGET ALTITUDE (ET) = 24015,2435

The program then roturns to the operator entry point to await additional
entrics.

Entry of SN, RAE, or attitude data: If the entry selection is made by the
operator, the following prompt message appears:

MAKE SELECTION

ENTER S/N RATIO VS TIME
ENTER RAE VS TIME
ENTER PITCH VS TIME
ENTER ROLL VS TIME

= ENTER MAG HDG VS TIME .

L 1 I )

If S8/N data is to be entered, the program requests the starting and ending
IRIG times for which the data is to be entered. This is prompted by:

ENTER STARTING IRIG TIME TO NEAREST SECOND AS HH:MM:SS
ENTER ENDING IRIG TIME TO NEAREST SECOND AS HH:MM:SS

The program also prompts the entry of the same radar parameters as

described above (AN/FPS~16 34 or manual entry). After the radar entries are
made, the program sequéntially requests S/N data. The time is

automatically indexed by 1 second after each entry. If an entry is to be
made for a time other than that automatically displayed, the operator must
enter the time before the S/N entry. This is accomplished by the following

prompt messages:

AUTOTIME IS 13:23:12 IF OTHER TIME IS DESIRED ENTER AS HH:MM:SS

If the time for the entry is correct the operator presses CONIT. Otherwise

he enters the desired time and then presses CONT. The next prompt appears
as:

ENTER S/N VALUE FOR 13:23:12
This sequence continues until all S/M points have been entered.
Entry of RAE data: If the RAE éntry modé was selécted, the program follows
the same procédures as described for.step B above except that thrée entries

are¢ made for each increménted or manually entered time. The prompt
messages are:

8-13
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ENTER RANCE (YDS) FOR 13:23:12
ENTER AZIMUTH. (DEG) FOR 13:23:12
ENTER ELEVATION (DEJ) FOR 13:23:12

D. Entry of piteh, roll, or yaw data: If pitch, roll, or yaw data is to be
entered, the formats of tho entry prompts are:

ENTER PITCH VALUE. (NOISE UF IS POS) FOR 13:23:12
or
ENTER ROLL VALUE (RT WING UP 1§ POS) FOR 13:23:12
or
ENTER MAGNETIC HEADING VALUE FOR 13:23:12

If CALCULATION OF SIGMA FROM STORED DATA was selected at the main menu point,
then the program uses the stored S/N and range values to compute radar cross
section (Sigma). For the calculations to be performed, the RAE, body axis
angles, and S/N data must be .in the computeér.

Prior to commencing the calculations, the program displays the default
parameters which will be used in the calculations. TIf any of these must be
changed, the operator may énter the number corresponding to the parameter which
must be changed, and the program will prompt the operator to make the revised
entry. During these entries, the parameter display portion of the CRT is
locked so that the parameter values simply toggle as the operator selections
are¢ made, The operator prompt méssages needed to meke the revised entries all
appear below the locked parameter display:

(1) SYSTEM PEAK POWER OUTPUT IN DBW = 60.00
(2) ANTENNA GAIN IN DB = 42.50
(3) WAVE LENGTH IN DBCM = T7.24
(4) LINE LOSSES IN DB = 5.50
(5) NOISE FIGURE IN DB = 11,20
(6) NOISE BANDWIDTH IN DBHZ = 62.04
(7) ADDED LOSSES (EX. DUAL BAND) INDB = 3,00

REBRABEBEBERRRERRE R R R AR E RN R LR RN R P E R R R E B R KRB kB %

When all necessary revisions to the default parameters have been made, pressing
CONT will take the program into the calculatioh mode.

As each calculation is made, the results are displayed on the CRT. As soon as
the display stops scrolling, the calculations are complete and may be printed
out or plotted by making the appropriatée ménu selections,

If PRINT DATA OR CALCULATED PARAMETERS was selected at the main menu point, a

printout of any of the data files may be obtained, Thée following prompt
mcssage is displayed to the operator.

8-14
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MAKE SELECTION.

TIME, SNR, AND MEASURED RAE VALUES

TIME, TLAT, TLON, AND TALT

TIME, RNG, BODY AZ, BODY EL, AND SIGMA
TIME, RNG, BODY AZ, BODY EL, AND ANT GAIN
TIME, PITCH, ROLL, AND COURSE

AW O
"Ny R

Had COMPUTE A/C ANTENNA GAIN PATTERN been se¢leécted at the main menu point, the
program follows the same procedure as described for the calculation of sigma
values, e¢xcept that the default parameters needed for the antenna gain equation
are first displayed to the operator, The form of this display is as follows.

(1) TRANSMITTED POWER IN DBMW = 39,99
(2) GROUND ANTENNA GAIN IN DB = 30,00
(3) ADDL LOSSES OR ADJUSTMENTS IN DB = 0,00
(4) TRANSMIT LINE LOSS IN DB = 0,00
(5) RECEIVE LINE LOSS IN DB = 0,00
(6) RECEIVER SENSITIVIIY IN DB = 103,00
(7) WAVE LENGTH IN DBM = .87

SERBEREERREERRRE AR REBERRR R AR R R B RERER kR AR R ERERRR

Again the operator may modify any of the displayed parameters by entering the
number of the parameter and pressing CONT', This will cause the program to
branch to an entry subroutine that will request the revised values., Once the
parameter table shown above has the desired valués, the operator presses CONT
and the program enters the computational mode.

As each value is computed, it is displaved on the operator CRT. When the (RT
stops scrolling, the calculations are complete and the operator may select the
desired print or plot mode by pressing CONI, which returns the program to the
main menu point where the selections may be made.

The fifth and sixth main menu selections (READ DATA FROM TAPE and STORE DATA ON
TAPE) are self-explanatory.

Three plotting selections are provided: (1) PLOT SIGMA VALUES VS. BODY ANGLES,
(2) PLOT ANTENNA GAIN VS BODY ANGLES, and (3) PLOT SIGNAL-TO-NOISE VS. TIME.
All of these modes are automatic. In e¢ach case, thé program establishes
maximum and minimum values for the plot axes based on the maximum and minimum
values contained in the files. The proper scales, labels, and headings are
placéd on the plot without additional operator éntries being made.
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CHAPTER 9

- CIRCUIT MARGIN CALCULATIONS

L LT T

This chapter provides theory and operating instructions for the circuit margin.
- calculations made in subprogram RFPL, RFPL is used to compute cirouit margin

h values for various standard transmitting and receiving systems used on the NASA
Aerodynamic Test Range.

Y

} General Theory

- In order to insure that the various r—f links used for tracking, telemetry, and
communications purposes have sufficient signal-to-noise ratios to provide
continuous communications throughout any specific mission, it is often. .
desirable to compute the circuit margin values beforehand,

In RFPL, the circuit margin for the r-f link. is determined from the relation

[Cm] = [Sn] - [Snr] (9.1)

where [Cm] is the circuit margin in decibels, [Sn] is the actual or predicted
signal-to-noise ratic at the detector of the receiver in decibels, and, [Snrl
is the required signal-to-noise ratio in decibels. Note that throughout the
derivations which follow, square brackets around parameters indicated that they
must be expressed as decibel quantities. 3

The default values of required received power for various r—f links used on the
ATR are given in table 9.1.

Table 9.1, REQUIRED S/N VALUES FOR ATR R-F LINKS

Modulation type Reqd. receive power 1
FM/FM, PAM/FM, PDM/FM g - 12 dB
PCM/FM 15 dB
UHF voice 10 dB
On-board C-band beacon 12 dB
C-band radar 12 dB

[Cm] may be calculated from the well known r—f link equation

rn

[cm] = [Pt] - [Lt] + [Gt] - [P}] + [Gr] - [Lr] + [Rs] - [Snr]l.  (9.2) ¢
vhere [Pt] is the transmitted power output in décibels referenced to one

milliwatt, [Lt] is the transmitting line losses in decibels, [Gt] is the gain
of the transmitting antenna in decibels, [P1] is the path loss in decibels,

9-1
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3 [Gr] is tho receiver gain in decibels, [Lr] is the recedving line losses in
' decibels, and [Rs] is the receiver sensitivity in decibels referenced to 1

; milliwait.,

yﬂ Transmitted powér output is computed from the relation

I - Pt (watts)

| Pattk loss is computed from tle relation

: o

f [P1] = 10 1log 55%%—1' (9.4)

where R is the length of the r-f path, and A is the wavelength of the
transmitted signal, The units used fox R and A in equation (9.5) must be
consistent,

Receiver sensitivity in watts is found from the relation

Rs = k Te Bw (9.5)

where k is the Boltzmann constant (1.38/10-2% joules per kelvin), Te is the
equivalent noise temperature (kelvin), and Bw is the réceiver noise bandwidth
(dertz). Receiver sensitivity in dBm is obtained from

_ k Te Bw
Bs = -10 log 3500 ° (9.6)
Equivalent noise temperature is found from
Te = (Nfr - 1)T, (9.7)

where Te is the equivalent noise temperature (kelvin), Nfr is the receiver
noise figure expressed as a ratio, and T, is the reférencé temperature
(290 K).

[Lt] and [Lr] are measured parameters.

For ATR telemetry systems, the system r~f link characteristics are as shown in
table 9.2

r;
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TABLE 9.2. ATR TELEMETRY SYSTEM CHARACTERISTICS

Parameter Dual Band System Triplexed System

Noisec figure (preamp on) . 5 dB : 3 dB

Noise figure (preamp off) 9 dB 10 dB

Noise bandwidth . 500 kHz 500 kHz . .
Receiving antenna gain 33 dB - 35°dB .. e
Receiving line losses 8 dB . 8 dB .

Typical frequency 1480.5 mHz 1480.5 mHz

Typical wavelength 0.2026 m 0.2026 o

A sample test calculation for the dusl-band antenna is provided below. Tn this
case, Pt has been taken as 5 watts, unity gain has been used for the
transmitting (airborne) antenna, 100 statute miles have been taken for the
distance, and 33 dB has been taken as the the receiving antenna gain. The
preamplifier is assumed to be used for the sample solution,

[Pt]

[P1]

13

Te

(Rs]

3

10 log Xmit Pwr (mW)
= 10 log 5 x 103

36,9897 dBm

2
= 10 log 11%%—1

(4n x 1.609 x 105 m)?
(0.2026 m)?

= 10 log

= 139,9825 dB

(Nfr - 1T,

(3.16 - 1) 290 K

627.06 K

-10 log (k Te Bw)

-10 1log (1.38 x gaiz.0§ x 5)

113.6384 dBm

e




b, T W

Therefore, for a PAM signal,

e

[CM]l = [Pt] + [Gt]

24 dB

~[Lt] = [P1] + [Gr] +_[Rs] - [Lx) ~ [Snr]

37 +0~-0- 140+ 33 + 114 - 8 -~ 12

For the triplexed antenna with preamplifier out and the same airborne

conditions, different values

for Gr and Rs would be used, The value for Gr,

found from table 9.2, is 35 dB, and Te is found from

Te =

and [Rs] is found from

[Rs]

Therefore, for a PCM signal,

[Cm]

37 +0=0 -~

1¢ dB

(Nfr - 1)T,
(10 - 1) 290 &

2620 K

(1.38 x 2610 x 5)
=10 log 1015

107.4451 dBm.

[Pt] + [Gt] - [Lt] = [P1] + [?r] - [Lr] + [Rs] - [Snr]

140 + 35 + 107 - 8 - 15

The system specifications for the AN/FPS-16 radar are shown in table 9.3, and
specifications for several common airborne beacon systems are shown in table

9.4.
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TABLE 9.3, C-BAND LINK CHARACTERISTICS

if Parameter Value
r‘ Power output 1 Mw
f. Receiver NF (paramps on) 4 dB
Receiver NF (paramps of f) 11 4B
: Receiver bandwidth. 2 MHz
, Transmitting antenna gain 43 dB
Radar line losses (Xmit) 4 dB

Radar line losses (Rec) 2 dB

TABLE 9.4. TYPICAL AIRBORNE BEACON CHARACTERISTICS

Parameter 228 302 207 DPN-66
Trensmitting power SV 300 W 40 W 500 W
Receiver sens., 40 dBm 70 dBm 70 dBm 70 dBM
Receiving ant. gain 0 dB 0 dB 0 dB G dB

For the radar-to-target link

10 log Xm1; i%wer

|9

{rt]

10 1og 1 x 109

90 dBm

10 log Sﬁ%%il

n

[p1]

(4n x 1,609 x 105)2
{0,0530 m)?

10 log

"

151.63

Therefore, with a 12 dB signal-to-noise requirement,
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[Cm] = [Pt] - [Lt] + (gt) - [P1] + [ar] - [Lr]l_+ [Rs] - [Snr]

=90 - 4 + 43 - 151 + 0 - 0+ 70 - 12

!
& = 36 dB

‘ For the. beacon return link the gain of the transmitting and veceiving antennas
¢ is reversed, the receiving line losses of the radar must be considered, the
' ground receiver sensitivity must be computed, and the airborne transmitter

power is used,

(Pt] = 10 log 400 = 56 dBm
(Nfr - 1)T, = (2,51 -1) 290 K = 438,45 K

i

109,17 dBm

Therefore, having a 12 dB requirement for lockon,

(cm)] = [Pt] + [Gt] -[Lt) - [P1] + [Gr] - [Lgl + (Rs] - [Sar]

=56 +0-0+ 151 + 43 - 2 + 109 - 12

= 43 dB

For uhf communications, typical values for the ground and airborne parameters

are given in table 9.5 {
TABLE 9.5. UHF R-F LINK CHARACTERISTICS
1

il

Value 1
!
i
i
i
|

Parameter

-

5, 10, or 20 V¥
100 dB
0 dB 1
225 to 400 Miz 1

Power output (air)
Airborne receiver sens.

Airborne antenna gain

Frequency
Ground transmitter power 50, 75, or 100 VW
Ground aqtenna.gain § dB
(AT-1097 GR) N
Ground receiver sens. 103 dBm {
Transmit line loss 1 dB
1 4B

Receive line loss




For the first uhf example, consider the case where a 20 watt airborne —
transmitter is installed.

[Pt] = 10 log (20 x 103%).= 43.01 dBm

. Since the manufacturer's receiver sensitivity is already given, the downlink
circuit margin can be calculated as

" [Cm] = [Pt] + [Gt] -[Lt] - [P1) +.[Gr] ~[Lg] + [Rs] = [Snr]
"

2 =43 +0-0~127 +5 -1+ 103 - 10

’ = 11 dB

: ' Voice uplink margin for the same 100 statute mile distance with 75 W of .
transmitted powcr would be computed from

[Pt] = 10 1log (100 x 102%) = 48.75 dBm

and
[Cm]

[Pt] - [Lt] + [Gt] ~ [P1] + [Gr] - [Lr] + [Rs] - (Snr]

w8 - 14+4+.5-127 + 0 = 0 + 100 - 10

L}

15 4B

It should be noted that a different equation must be used for the C-band radar !
link when in skin track mode. JTn this case the target's radar cross section
must be known (from theoretical estimates or from actual measurements),

The classical radar equation is

Pt G3 A2 ¢

S/N =
/ R4 Bw Nf L

x 1.07 (9.R8)

where Pt is the transmitted power given in watts, ¢ is the radar cross section
in m3, R is the target range i nautical miles, B is the equivalent noise
bandwidth in hertz, and Gain (G), noise factor (Nf), and combined line losses
(L) are given as power ratios. Since the signal~to-noise¢ calculations are only
approximate, it is generally the practice to néglect the 1,07 factor since it
is nearly unity.

Converting equation (9.9) to decibel form yields
[Cul = [Pt] + 2[G] + 2[A] + [o) - 4[R] - [Bwl - [Nf] - [L] - [Snr) (9.9)
Considering an AN/FPS-16 skin tracking situation with a 1 m? target at 100

nautical miles and parametric amplifiers off, the values for thé various
parameters in equation (9.9) are




- T e L

A

- e T T

w»-.wwmw,w'mvmw AVEERET AT e T AT

[Pt] =- 60 dBw
(6] = 43 dB

[A] = 7.5 dBem
(o] = 0

[R] = 20 dBnm
[Bw] = 60 dBhz

Substituting these values into equation (9.9) yields
[Cm] = 60 + 2(43) + 2(7.5).+ 0 - 4(20) - 60 - 11 -. 4 - 12 = ~6 dB,

which indicates that the system would be 6 dB below the required 12 dB lockon
signal stremgth, .

Variable Names

Name Description
Beacon Flag indicating type of beacon
Bn Noise bandwidth, dBHz
Bni6 Noise bandwidth of AN/FPS-16 radar, dBHz
Bw Bandwidth, KHz
Bwlé Bandwidth of AN/FPS-16 radar, ¢BHz
C Speed of light (3 x 10% m/s)
Change Flag indicating certain default paraméters must be revised
Cn Circuit margin, dB
Fréq Frequency, Miz
Freqb Beacon résponse frequency, Miz
Freqlé AN/FPS-16 transmitting frequency, Miz
Gr Gain of receiving antenna, dB
Grl6 Réceiving gain of AN/FPS-16 antenna, dB
Gt16 Transmitting gain of AN/FPS-16 anténna, dB
L Wave length, cm
9-8
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L16
Lam
’ Lr
Lrl6.
L Lt
L ‘ Mode
' Mode2
i Mode3
) Mode5
Mode6
Nf
Percent
P1

Pt

Pta

Ptalé

Rng
Rs
Sigma
Snr

Snr16

Te

Tim

e T TR ..t

Skin track wave length, om

Wave length, dBm

Receiving line losses, dB.

Receiving line losses of AN/FPS~16 radar, dB
Transmitting lime losses, dB.

Flag indicating program mode¢ selection

Flag indicating dual band.mode selection
Flag indicating triplex antenna mode selection
Flag indicating uhf mode selection

Flag indicating radar mode selection .
Noise figure, JB

Percent power .

Path loss, dBam

Transmitted power, dBYW or dBmW

Actual transmitting power, W or KW
AN/FPS-16 transmitting power, EW

Range, dBnm

Range, nm

Receiver sensitivity, dBm

Radar c¢ross section, dBm?

Required signal-to—noise ratio, dB

Required skin track signal-to-noise ratio, dB
Equivalent noise¢ temperature, K

Flag indicating type of télemetry modulation

9-9
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Computational Algorithms

Tho essential subroutines used in the RFPL subprogram arc.as follows:.

A,

B,

D.

E,

G.

-Selectl: Selectl allows the operator to select circuit margin calc¢ulations
for r-f links assoociated with the dual~band -telemetry system, the triplexed
telemetry system, the Babcock uplink system, the voice communications (uhf)
system, and the C~band radar system., Two additional selections arc
provided for calculating noise¢ figure from equivalent noise temperature,
and for calculating receiver sensitivity from the system noise factor, The
operator makes his selection by ‘entering the number which corresponds to
the desired menu item, The number is stored as Mode.

Sysselect: Subroutine Sysselect allows the opeiator to select a particular

system or configuration associated with the major link selection., These

selections are self-cxplanatory and are fully covered in the Program

Operation section of this Chapter, . :

Dualspec: Subroutine Dualspec provides the default specifications for the

dual-band telemetry system.

Trispec: Subroutine Trispec provides the default specifications for the

triplexed telemetry system,

Cspec: Subroutine Cspec provides the default specifications for the C~band

video downlink system.

Babspec: Subroutine Babspec provides the default specifications for the

Babcock uplink system.

Comspec: Subroutine Comspec provides the default specifications for the

uhf communications system,

1. Dnspec: Subroutine Dnspéc is called by Comspec if the uhf downlink
margin is to be computed. -Dnspec provides default values for parameters
unique to the uplink configuration,

2. Upspec¢: Subroutine Upspec is called to Comspec if the uhf uplink
margin is to be computed. Upspec provides default values for
parameters unique to the uplink configuration,

Reaconspec:

Subroutine Beaconspec provides the default specifications for
the selected airbore beacon (228, 302, 207, or DPN-66). :

Radspec: Subroutine Radspec provides default values for the AN/FPS~-16 radar
System. .
Manspec: Subroutine Manspec permits the operator to make manual entries of

the r—-f link parameter values,

Self-explanatsry CRT messages prompt the
opérator entiries,
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. K. Compute: Subroutine Compute prompts the operator to enter the transmission
r range in nautical miles for the current pass, Tt then computes path loss
and circuit margin using equations (9.4) and (9.2).

L. Skincomp: Subroutine Skincomp computes the r-f circuit margin for C-band
radar skin track conditions. This requires the use of equation (9,9),

g Program Operation

" Upon entry in to the RFPL subroutine, the following CRT message is
displayed on the CRT,

' PLEASE SELECT THE DESIRED OPERATING MODE

CIRCUIT MARGIN CALCULATIONS FOR MANUAL ENTRIES

CIRCUIT MARGIN CALCULATIONS FOR DUAL BAND SYSTEM

CIRCUIT MARGIN CALCULATIONS FOR TRIPLEXED SYSTEM

CIRCUIT MARGIN CALCULATIONS FOR BABOOCK (COMM ANT) UPLINK
CIRCUIT MARGIN CALCULATIONS FOR:UHF VOICE LINKS

CIRCUIT MARGIN CALCULATIONS FOR AN/FPS-16 RADAR

NOISE FIGURE FROM EQUIVALENT NOISE TEMPERATURKL

RECEIVER SENSITIVITY FROM SYSTEM NOISE FIGURE

0O IANA Wb WK

Ponow oW RonwN

The operator responds by entering the proper number and pressing COONT.
Immediately after pressing CONT, the output selection is displayed.

SELECT OQUTPUT DEVICE
CRT

THERMAL PRINTER
LINE PRINTER

wonon

0
1
2

Again, the operator responds by entering the number of the correct
selection and CONT. If calculations ar? to be made for the dual band
antenna, the next display will be:

MAKE SELECTION

DUAL BAND RECEPTION WITH PREAMPS ON
DUAL BAND RECSPTION WITH PREAMPS OFF

1
2

Followed by: ;

PLEASE INDICATE TYPE OF PCM SIGNAL !

.13

1
2

FM/FM, PAM/FM, PDM/FM ’
PCM/FM

1f, instead, calculations are to be made for the triplexed system, the
following messagé will be displayed:

9—11 1
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MAKE SELECTION

TRIPLEX UPLINK. WITH 25 WATTS OUTPUT
TRIPLEX UPLINK WITH 50 WATTS OUTPUT
TRIPLEX UPLINK WITH 100 WATTS OUTPUT
TRIPLEX L-BAND DOWNLINK WITH PREAMPS ON
TRIPLEX L~BAND DOWNLINK WITH PREAMPS OFF
TRIPLEX C-BAND TV DOWNLINK WITH PREAMPS ON

ny 80w

Followed by:
PLEASE INDICATE TYPE OF PCM SIGNAL

o R

1 = FM/FM, PAM/FM, PDM/FM
2 = PCM/FM

If the calculations are to be made for the uvhf system, then the message
will appear as:

MAKE SELECTION

UHF COMM UPLINK (12-FOOT PARABOLIC DISH)

UHF COMM DOWNLINK (12-FOOT PARABOLIC DISH)
UHF COMM UPLINK (AT-1097-GR) ,
- UHF . COMM DOWNLINK (AT-1097-GR) ;

Hw N

“Hononon

If the calculations are to be made for the AN/FPS-16 radar, then the message
will appear as:

MAKE SELECTION

: C~BAND RADAR BEACON DOWNLINK (PARAMPS ON)
C-BAND RADAR BEACON DOWNLINK (PARAMPS OFF)
= C-BAND RADAR UPLINK (BEACON)

C-BAND RADAR SKIN TRACK (PARAMPS ON)

. C-BAND RADAR SKIN TRACK (PARAMPS OFF)

W W
owowonon

After the appropriate operator selection has been made, if the calculations
involve airborne beacon specifications, the next message displayed is:

ENTER TYPE OF BEACON IN USE

1 = 228

2 = 302 ;
3 = 207 i
4 = DPN-G6 "

The program now branches to the appropriate subroutines where default S
values for the parameters associated with the selected system configuration ‘
are assigned to the appropriate working variables. Immediately thereafter, ‘
the default values are displayed on the CRT. If the operator accepts the
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default values then he..eimply presses CONT. If.he wishes to change any one

or more of the default values, he pressas. 1.and CONT.
A typiocal format of the.dcfault‘parameteerisplay”is

THE DEFAULT VALUES USED FOR THE DUAL BAND TELEMETRY SYSTEM ARE

AIRBORNE TRANSMITTER POWER : S.0W
TRANSMITTING. FREQUENCY 1480.5 MHZ
TRANSMITTING . ANTENNA GAIN 4 0.0 DB.
TRANSMITTING LINE LOSSES 0.0 DB
NOISE FIGURE (PREAMPS OFF) 9.0 DB
RECEIVING LINE LOSSES 7.9..DBM
RECEIVING ANTENNA GAIN 33.0 DB
MINIMUM ACCEPTABLE SIGNAL LEVEL 15.0 DB
COMPUTED SPECIFICATIONS ARE
TRANSMITTER POWER. 37.0 DBMW
NOISE FACTOR AS RATIO 7.9
EQUIVALENT NOISE TEMPERATURE 2013.6 K
RECEIVER SENSITIVITY 108.6 DBM

IF SPECS OK PRESS CONTINUE, IF CHANGES ARE NEEDED PRESS 1 AND OONT

Similar types of displays will appear for any system and configuration
selection made by the operator. After any changes have been made to the

default parameters, the operator presses CONT and the program provides the
following prompt message:

ENTER TRANSMISSION RANGE IN NAUTICAL MILES

The operator responds by keying in
to the ground. Upon pressing CONT
displays the results as: ...

-the range fim the transmitting aircraft
the program enters the compute mode and

TRANSMISSION RANGE 125.0 N.MI.
+Pt TRANSMITTED POWER 37.0 DBMW
+Gt TRANSMITTING ANTENNA GAIN 0.0 DB
-Lt TRANSMITTING LINE LOSS 0.0 DB
-P1 PATH LOSS -143,1 DBM
+Gr RECEIVING ANTENNA GAIN 33.0DB.
=-Lr. RECEIVER LINE LOSSES. ~7.9 DB
+Rs RECEIVER SENSITIVITY 108.6 DBMW
-8Snr MINIMUM ALLOWABLE SIGNAL LEVEL -15.0 DB
Cn . CIKCUIT MARGIN 12.5 DBMNW

If CONT is depréssed at this point, the program will return to

thé range
entry point to permit a second distance to bé checked.. . .

9-13
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Display formats for all of the various modes and configurations are-similar
to that shown above. for the dual-band system. In the.event that a .skin~
track radar link is being checked, then the display formats are slightly
different. . A typical defaunlt parametér display for the skin track mode is:

THESE ARE THE DEFAULT. SPECIFICATIONS FOR C-BAND SKIN TRACK .

PERCENT POWER SELECTED : 100,0 PERCENT
TRANSMITTING POWER FOR ABOVE PERCENT 1000,0 KW
TRANSMITTING LINE LOSS 3.5 DB.
RECEIVING LINE LOSS 2.0 DB .
ANTENNA GAIN 42.5 DB
TRANSMITTED WAVELENGTH 7.2. CM
RADAR SYSTEM NOISE FIGURE 4.0 DB
RADAR RCVR NOISE BANDWIDTH 63.0 DBHZ
MINIMUM ACCEPTABLE SIGNAL LEVEL 20.0 DBV

IF SPECS OK PRESS CONTINUE, IF CHANGES ARE NEEDED PRESS 1 AND. CONT

If changes must be made to any of the system parameters, the operator
presses 1 and CONT, and the program sequentially steps through all of the
input selections. If no entry is made at any entry point, the program
retains the last.value (or the default value if no changes have been
entered for that parameter),

When the displayed system parameters are correct, pressing CONT will cause
the next message to appear on the. CRT,

ENTER THE TARGET RADAR CROSS SECTION

The operator must make thé appropriate entry (for example, 15 dBm?) and
press CONT. The program then requests the target range.

ENTER TARGET RANGE IN. NAUTICAL MILES

After these entries have been made, the program enters the compute mode and
displays the results. to the operator, A typical display is: é

TRANSMISSION RANGE 125.0 N.MI.

+Pt TRANSMITTED POWER 60.0 DBW

+26 2 X ANTENNA GAIN A 85.0 DB

-4R 4 X TARGET RANGE ~83,9 DBNM ’
~Ltr COMBINED LINE LOSSES ~5.5 DB

+2Lam . 2 X TRANSMITTER WAVELENGTH 14 .5 DBCM

-Nf . OPERATING NOISE FIGURE . -4.,0 DB .
~Bn RCVR NOISE BANDWIDTH -63.0 DBHZ .
+Sig RADAR CROSS SECTION 15.0 DBM2 e
-Snr MINIMUM ALLOWABLE SIGNAL LEVEL -20.0 DBMW . 1
Cni CIRCUIT MARGIN -1.9.DB ‘

9-14
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CHAPTER 10 .
SKYSCREEN PROGRAM

The skyscreen program.is uscd to compute line-of-sight coverage patterns for.
specific antennas for which horizon~blockage data has.been entered., Data is
acquired by means of theodolite measurements taken at the antenna site, or, in
the case.of tracking antennas.with remote vidoeo installed, from elevation
readings taken at the operator’s comsole. In taking data, the horizon profile
is measured at each 1-degree increment of azimuth angle. When the necessary
mislevel corrections have been made to the measured.data, they are éntered into
the skyscreen program and stored on tape for future use in generating coverage
pattern plots for targets at specified operating altitudes.

General Theory

Surface-To~Air Calculations

The skyscreen program.uses the elevation blockage data for each of 360 azimuth
angles to compute the geametric line-of-sight range at which optical or zr~f

energy will .intersect a given altitude shell when the antenna is depressed to
the terrain clearance point for that angle. The calculations are carried out

using the simple geometry shown in figure 10.1.

Ground site

E . St
B, Terrain
Re Sea level
Re
‘r
A .
Figure 10.1
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Ht is the sclected target height, Hs is the elevation of the .
ture, and B is the -

Re is the average radius. of curve
from the antenna site at an

IJf a ray were projected
scot with the Ht shell at the point C. The
stion is denoted by St and the map distance
t is denoted.

(surface arc) betweeon the. tracking site and the maximum range poin
by S. The three opposite angles formed by tho triangle legs S, Ro * I, and

Re + Hs are A, B and .C, respectively.

In figure 10.1,
site abovec sed level,
elevation clearance angle.
elevation angle E, it would inter

slant range toO the po

noted by 8, the.eccentricity
then thevnorth~south
is given by

e earth spheroid is de

he tracking site by H

If.the semimajor axis of th
t the tracking site

by &, and the latitude of t
(meridional) radius of curvature 8
- g2 ‘\
a(t - e2) (10.1)

R=10- easintpy /3 -

and the east-west radius of curvaturé at the tracking site is given by
N = 2 (10.2)

(1 - ersinzp)??’ )
The average radius of curvature at the tracking site is found from

Re = (R x N).32, (10.3)
Again consider. the triangle ABC shown in figure 10.1. Tt is apparent that the
angle B and E are related by

B=E+ n/2. (10.4)

The angle C is found from the law of sines as

Re + I in B
C = agcsin i—£—;;~§lﬁ%32—'y (10.%)

e A is found from

and the angl
(16.6)

A=n-DB-C.

own is the slant range from the tracking site to the
f the elevation Tray with the selected altitude shell.

lving the law of sines,

The only remaining unkn
point of jntersection ©
This is easily obtained by 8appP

_ + A
(Re n§) sig_é__ (160.7
sin B

"

Sr

The surface arc distance (map distance) is found from the relation
(10 .8) L]

¢ =Re x A

reen program, the elevation clearance angles for a
entered for each of 360-degrees of dazimuth, The program
(S) and the slant-range

In the baseline skysc

specific tracker are
then computes the map distance
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azimuth angle. A plot is then.prepared for the selected tracker showing the
line~of«sight coverage pattern for any designated target altitude,

I{ spocified by the operator, the program will also call the gradient
refraction subprogram to provide refraction adjustments to the slant range and
map distance, This is accomplished by determining tho true elevation and range
values prior to computing the slant range and mapping distance, The theory of
gradient refraction was presented in chapter 6.

Figure 10,2 shows a typical circular plot with both gedtmetric and refraction—. .
corrected coveragoe patterns,

FPS—-16 RADAR COVERAGE PATTERN FOR TARGET AT 40000 FT

With refraction correction

258 NN

Figire 10,2
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Figure 10,3 shows a plot of the elevation clearance angles versus azimuth
angles for the AN/FPS-16 (34) radar at DFRC. -

FPS~16 Skyscreen Data
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Antenna azimuth angle, deg

Figure 10.3

Air To. Air Calculations —

When an operation is conducted beyond line-of-sight communication range, it may
be desirable to use an airborne repeater system to serve as a telemetry and
communications link between the test vehicle and the ground control facilities,
This requires certain additional calculations that will allow the test planners
to compute a suitable station point for the airborne rélay aireraft., Two
possible mission scenarios exist in which .this. type of reélay situation can be
useful. The first is for missions conducted at normal flight altitudes but at
extended ranges, The sccond involves tracking a low flying test aircraft at
extended range, in which case terrain obstacles are a problem on.both éends of
the communications net.

10-4
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High-Flying Test Aircraft Calculations

The geometry of the first sconarié is provided in figure 10.4, To optimize the
signgl-to-noise ratios between the various transmitting and recoiving units
(tracking site, airborne relay, and target vehicle), it was docided that the
relay aircraft should operate midway. between the tracking station and the
tracked vehicle so that S1 is approximately equal.to S2. Obviously, since both
the. relay aircraft and the tracked vehicle arc at considerably higher altitudes
than that of the tracking site, it is simply neécessary to compute minimum
altitude at which the relay aircraft will have diree¢t line-of-sight
communiocations with the tracking site., This is accomplished as follows.

First, the operator specifies the maximum anticipated distance betweon the test
vehicle and the ground site., This distance (S) is entered by the operator.

The geometry used to compute the position and minimum altitude for the tracker.-.
is the same as shown in figure 10.1. BHowever, now the distance S is known and
the altitude, Hr (altitude of the relay aircraft), must be determined,

//-Relay aircraft

Test
//— aircraft

Ground

it
site Ht

Figure 10.4

In this case the arc length S1 is one—half of the maximum anticipated operating
distance S of the test aircraft, and the angle A (in radians) is simply

A =_Re/S. (10.9)-

For this calculation, the maximum obstruction angle (E) for the operating
sector is found from the stored.obstruction data., The program then computes P
from equation (10.4) and C from equation (10.6). EKEnowing angles A, B, and C as
well as Ke and Hs, the minimum line~of-sight altitude (Hr) of the relay
aircraft c¢an be obtained from

_ 8in B (Re + Hs) _

sin.C Re. {10.,10)

The slant range from the ground sité to the relay aircraft is again found from
equation (10.7)

rn
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Low-Flying Test Airoraft Calculations

When the test aircraft is operating at very low altitude, such as on terrain-
following radar. (TFR) missions, then it is nccessary to comsider both ends' of
the communications link, Here, one must first determine.the worst case
situation, such as.a pass down a valley where a mountain range may 1ie between
the test and relay aircraft, In this case the position of the relay aircraft
is determined by noting the distance from the test aircraft's flight path to
the highest obstruction measured in the sector from the test aircraft in which
the transmissions to the relay aircraft will be made. Figure 10.5 shows the
geometry of . the two. transmission links. The lowest altitude of the test
aircraft is then entered, and the minimum l1ine-of-sight elevation angle for the
test aircraft to relay aircraft segment is determined by the procedure set )
forth for determining the blockage angle on. the test aircraft link, Next, the
operating sector from the ground station is entered and the highest stored
obstruction angle for that sector is used as the obstruction angle for the site
to relay link. The operator then enters the maximum surface distance (S)
between the test aircraft's grouni path and the ground site.

Z//-Relay air¢raft .

— ——

Highest sector
obstruction

////Tnighest sector obstruction

~ " Test aircrft

Ground site JHt

Sea level

Figure 10.5

The blockage angle on .the test aircraft link is determined by noting the
geometry of figure 10.6. In this figure, D is the surface distance from the
flight path of the aircraft to the highest obstruction in the sector in which
the transmissions to the relay aircraft are to be made. The height of the
obstruction is Hm and the height of the low. flying.target is Ht, Tt is first
necessary to compute the angle B2. 1In figure 10.6, the known parameters are
Re, fm, Rt, and D. The leg Sr0 can be. found from the law of cosines as

n
H

-
-

(sg0)2 = (Re + Hm)2 +-(Re + Ht)? - 2(Re + Iim)(Re + Iit) cos(D/Re), (10.11)
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Knowing Sr, it is possible to find the angle B2 by application of the law ol . ;
sines, : :

(10.12)

+ .
B2 = arcsin [(Re H:; 2n a].

Returning to figure 10.5, it is apparent that the law of sines ¢an be applied
to equate functions of the unknown terms Cl and C2,

(Re + Hs) sin Bl _ (Re + Ht) sin B2

= = e . (10,13) .

Re + hr =

Grouping the known parameters Hs, Ht, Bl, and B2 into terms K1 and K2 where

K1 = (Re + Hs) sin B1, (10.14)
and | !
K2 = (Re + lis) sin B2 (10.15) ;
allows equation (10.13) to be simplified to F‘
Kl sin €2 = K2 sin Cl.. (10.16) "i

Tt is also obvious from figure 10.5 that Al + Bl + C1 = 7%, and
A2 + B2 + C2 = t, Combining these two relations yields
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Al + A2 + Bl + B2 + C1 + €2 = 2n. (10.17)
Recalling that
Al + A2 = A = 8§/Re, . _ . - (10.18)

and knowing Bl and B2, it is now possible to find an expression for C2 as a
function of Cl1,

€2 = [2n - S/Re.- (B1. + B2)] - C1, . (10.19)
Tf K3 is. substituted for the known quantity [2s - S/Re - (Bl + B2)] in equation
(10.19), and equations (10,19) and (10,16) are combined, a simplified
expression may be written,
K1l sin (K3 - C1) = K2 sin C1, (10.20)

Applying a standard double~angle formula to the left-hand side of equation
(10.20) and rearranging terms yields

(K2/K1) sin €1 = sin K3 cos C1 ~ cos K3 sin Cl. (10.21)
If the known terms in equation (10.21) are replaced with
P1 = K2/K1, P2 = sin K3, and P3 = cos K3, (10.22)

equation (10,21) may be rearranged tovyiequghgﬂfollowing.expression in which
Cl is the only unknown:

P2 cos C1 = (P1 + P3) sin C1, (10.23)
Ol‘ ' N B ‘..
sin C1 PR
cos C1 ~ P1 + p3 ~ tan 1. (10.24)

Knowing C1 and Bl, Al can be simply found from the relation
Al = n - Bl - C1, (10.25)
and S1 can be found from _
S1 = Re/Al. : (10.26)
A fina) calculation of hr is made using a rearranged form of equation (10.;3).

. [e. o+ vy sin Bl
hr = [(Re_+ Iis) <in Cl] - Re. . (10..27)

Thus, we have now determined the distance from the ground station to the point
at which. the relay plane should be statiomed (S1) and the wminimum altitude.(hr)
at which reception will be maintained with both the ground station and the test. _
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aircraft. Obviously, the fact that the relay aircraft must maintain some type
of orbit. requires that additional altitude be allewed for the off~point
conditions, In the skyscreen program, the suggested minimum recéption altitude
for the relay nireraft is placed 5000 fect above the computed altitude,

Skyscreen Programs

The following descriptions cover the algorithms essential to carry out
mathematical routines presented in this chapter,

Variable Names

Name Description

A Interior.angle of figure 10.1

Al .. Interior angle subtended by ground station to relay arc

Aa Semimajor axis. of reference spheroid

Azl Azimuth at starting point of communications sector

Az2 Azimuth at ending point of communications sector

B. Elevation angle plus 90[ as shown in figure 10.1 _
Bl Angle in A1-B1-Cl triangle in figure 10.5

C Angie in A-B~C triangle of figure 10.1

C1 Angle in Al1-B1-(1 triangle in figure 10.5

Conv Conversion factor (radians to degrees)

D Map distance to obstruction on test aircraft link

Den Radical term in denominator of equations (10,1) and (10.2)
El. Elevation angle of relay air¢raft from ground statiom . .
E2 Elevation angle of relay aircraft from test aircraft

Elm Maximum elevation angle for sectcr

H(N) Elevation Array

Hin _...Height of obstruction

Hr Mainimum line~of-sight altitude of tfeélay aircraft
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Hs Elevation of grouwnd station
i Ht . .. Altitude of test.airoraft
:3 11 Integer value of sector starting azimuth
b? 12 Integer value of sector ending azimuth
:; J(M,N) Array used to store elevation angles, ground distances and
V% slant ranges
k Mapdist Spheroid distance from ground station to relay aircraft.
, \ Maxdist Maximum coverage distance for all sector angles
j Num Numerator of equationm (10.1)
i Nz __. .N.value at ground station as given by equation (10,2)
PI n
Re Average earth radius at ground station .
Rz R value at ground station as given by equation (10.1)
S . Distance to maximum coverage point for any azimuth angle
S1 Distance from ground station to relay aircraft iu tws link
situation
Sinlat . Sine of ground station latitude
Sin2lat Square of the sine of the ground station latitude
Sina . Sine of angle A in figure 10.1
Sindb Sine of angle B in figure 10.1
Computational Algorithm u
The essential algorithms used to compute the coverage ranges and relay aircraft
positions are as follows: !

A. Subroutine Skyscrl: Subroutine Skyserl computes the overall coverage ;
pattern around a specified tracker using stored terrain blockage data.
Upon entry into the subroutine,. step 4 allows the operator t. select the
desired ground station, and step 5§ allows the output. selection (CRT or
plotter) to be made. At step 6, the program branches to Entryl where the
operator is prompted to enter the operating altitude (ft) of the target for
which the skyséréen plot is desired. The. format of the Entry! display is. %
provided in the Program Operation section.

10-10




In steps 8 .and 9, the sin? value of the ground station latitude is computed
and storcd for. use by the program. Steps 10 to 14 compute the two radii of
curvature and the average radius of curvature at the ground station., Tn
step 15 the radian mode is set and the radian to degreo convesrsion faptor
is computed in step 16, In step 18 a FOR-NEXT loop is established which
sequentially picks up the terrain blockage angle for each 360~degree of
azimuth and performs calculations to determine the surfave distance and
slant range to the point where the elevation ray intersects with the Ht
shell. The elevation angle, slant range, and surface distance are stored
in & 360 by 2 dimensional array J. 1In step 30, the surface distance is
compared with tho maximum surface distance for tbis loop, and the maximum
vaiune is stored as Maxdist.,

For correlation with the text, steps 8 to 14, implement equations (10.1) to
(10.3), step 20 implements equation (10.4), step 22 implements equation.
(10,5), step 23 implements equation .(10.6), step 25 implements equation

(10.7), and step 26 implements equation (10.8).

1, Skyscrl:!
2, Htf=0
3. .. PRINT PAGE
4. GOSUB .Radarsel
5. GOSUB .Plotsel
6. GOSUB Entryl
7. DEG
8. Sinlat=SIN(Lat)
9. Sin2lat=Sinlat*Sinlat’
10. Num=Aa*(1-E2)
11, Den=SQR(1-E2%Sin2lat)
12.. Rz=Num/Den**3
13,  Nz=Aa/Den
14, Re=SQR(Rz*Nz)
15. RAD
16,. Conv=360/ (2*PI)
17, Maxdist=0
18, FOR N=1 TO 360
19. E1=H(N)/Conv
20, B=El1+4PI/2
21, Sinb=SIN(B)
22, . C=ASN((Re+Hs)*Sinb/'(Re+Ht))
23, . A=PI~-B-C
24, Sina=SIN(A)
25, Sr=(Re+Et)*Sina/S$ind
26. Mapdist=Re®*A
27. J(N,0)=El*Conv
28, J(N,1)=Sr.
29, J(N,2)=Mapdist
30. ITF Mapdist)Maxdist THEN Maxdist=Mapdist
31, NEXT N
32.. DEG
33, J(0,0)=Maxdist
34, PETURN
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B, Subroutine Skyscr2: Subroutine Skyser2 computes the position and altitude
of a relay aireraft used for communic¢ation with a high-flying, extended
range target, After entry into the subroutine, the program branches to
Subroutine Radarsel in. which the operator is prompted to selecét ono. of the
stored ground stations, This subroutine returns the-altitude of the site
(Hs). and its latitude (Lat)., The latitude value is used in steps 4 to 10
to.compute the two radii of curvaturc and the averapge radius of ¢urvature
at the ground statlon. At step 13, the program branches to Entry 2 where
the operator is prompted to enter the maximum operating range of the test

V’ aireraft (n mi), and the starting and onding values of the operating sccter
R as measured from the ground station (for example, 10 degrees to 40
} degrees), In step 15, the maximum operating range is -converted to meters,

A The two azimuth values are stored as Azl and Az2, end in steps 16 to 18,
| . they are set to the nearest integer values and adjusted for measurement
across the 360/0 degree discontinuity. Note that the operating sector is
i always meesured clockwise.from Azl to Az2, JTn step 19, a FOR-NEXT loop is
) established to find the maximum blockdge angle in the selecteéd operating
sector., JIn step 24, the maximum value of elevation is stored in radian
mcasure., The same procedure as used in Skyscrl is implemented to compute
) the angle Bl, and angle Al is computed by implementing equation (10.9) in
step 28. The angle C1 is found from equation (10.6) and, in step 30, the .
‘ minimum reception altitude for the relay aircraft (Hr) is computed by 5
implementing equation (10,10), Slant range is determined from equation . :
(10.7) as before. The computed minimum reception altitude (Hr) is used to
obtain a recommended relay altitude (Rxr) by adding a constant 1500 meters,
Steps 31 and 33 compute the same values in feet, and steps 34 and 35 round .
, the values to the nearest hundred, : 4

The formats of the Entry2 and Print2 displays are given in the- Brogram
Operatioca section.

1., Skyscr2:!
2. DEG
3. GOSUB Radarsel
4. Sinlat=SIN(Lat)
5., Sin2lat=Sinlat*Sinlat
6. Num=Aa*(1-E2)
7. Den=SQR(I-E2*Sin2lat)
8.. Rz=Num/Den*#*3

9. Nz=Aa*Den
10, Re=SQR(Rz*Nz)
11, Conv=360/(2*PI) :
12, Skyscr2a:! i
13, GULSUB Entry2

14.. RAD i
15. Eilm=-PI/2 .
16. T1=INT(Az1) :

17. I12=INT(A22) "

18. IF I12<I1 THEN I2=I2+360
19, ._FOR N=I1 T0 12 1
20. IF N>360 THEN N=N-360
21, E1=H(MN1)
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C.

22, TF EL)Elm THEN Elm=El

23, NEXT N

24, E1=Elm/Conv

25, B1=E1+PI/2

26, $inb=SIN(B1)

27. S1=8/2 S—
28, A1=S1/Re

29, C1=PI-Al-Bl

20, Hr=(Sinb'(Re+Hs)/SIN(Cl)l?RQ_

31. . ﬂrf=ﬂr*3937/1200

32. Rr=Hr+1500

33, Ref=Rr*3937/1200

4. Rr=PROUND(Rr,2)

35. erFPROUND(er.2)

36. Sr1=(Re+ﬂr)‘SIN(Al)/Sinb

37. GOSUB Print2

38, PAUSE

Subroutine Skyscr3: Subroutine Skyscz3 is used to determine the optimum
positioning for a relay aircraft used to maintain communications between &
ground station and a low—-flying test. aircraft. Operator imput parameters
are the distance (S) to the test aircraft flight path point at which the .

blockage conditions are to be checked, the altitude of the test aircraft at.

that point (Ht), the altitude (Hm) of the highest obstruction in the test
aircraft's transmitting sector, the distance (D) of the obstruction from
the test airsraft f1ight path, and the azimuth angle Az from the ground
station to the test aircraft point,in.question. The. stored latitude (Lat)
of the ground station is also used as & program input parameter. .

Steps. 2 to 11 are identical with those previously described for the Skyser2
subroutine. At step 13 the program branches to subroutine Entry 3 to
accept the operator inputs, At step 15, the angle A0 (shown on figure 10.6
is computed, and equation (10,11) is implemented in step 16, In steps 17
to 19 the sector azimuth angles are initialized to integer values and
compensation is made if the sector crosses the 360/0 degree discontinuity.
In step 20, a FOR-NEXT loop- finds the highest stored elevation blockage
angle for the ground station sector that lies 10 degrees on either side of
the test aircraft's azimuth angle, and that value is stored as El. Tn step
27, Bl is computed using equation (10.4), and, in step 28, B2 is computed
using equntion.(10.12). The known terms K1, K2, K3, P1, P2, and P3 (egs.
(10.14) to (10.16) and (10.22)) are computed in steps 30. to 35. Im steps
36 to 38, C1 is determined from equation (10.24), Al is found from equation
(10.25), and 81 is found from equation (10.26). In step 40, Hr is
determined by implementation of equation (10.27), and the corresponding
value. in feet is computed in step 41. In steps 42 to 45, the recommended
relay altitude in meters and feet is computed, Note that the recommended .
altitude is simply the mihimum reception altitude plus 1500 meters.
However, the recommended altitudes (in both meters and feet) are rounded to
the nearest hundzed. Tn step 46, Srl is determined by implementing
équation (10.7)

10-13

TN

n

b 3
-

-




.....

At step 47, subroutine Print3 is called to printout the values for S1 (the
distance to the relay point), Srl (the slant range distance to the relay
aircraft), Hr (the minimum reception altitude), and Rr (the recommended
relay aircraft altitude).

The formats of the Entry3 and Print3 displays are shown in the Program
Operation section.. e

1. Skyscrd:l

2., DEG

3, GOSUB Radarsel

4. Sinlat=SIN(Lat)

5. SinZIatéSinlat*Sinlat

6. Num=Aa*(1-E2)

7. Den=SQR(1-E2*Sin2lat)

8. Rz=Num/Denl3_

9, Nz=Aa/Den

10. Re=SQR(Rz*Nz)

11. Conv=360/(2*PI)

12, Skyscr3a:!

13, GOSUB Entry3

14, Elm=-PI/2

15. A0=D/Re

16. Sr0=SQR((Re+Hm)“2+(Re+ﬂt)“2“2*(Re+Hm)*(Re+Rt)‘COS(D/Re))
17. Az1=INT (Az-10) :

18. Az2=INT(Az+10)

19, . IF Az2<Azl THEN Az22Az2+360

20. FOR N=Azl TO. Az2.
21, N1=N
22. IE N1>360 THEN N1=N1-360
23, FR1=H(N1)
24. IEF E1JElm THEN .E1m=El
25, NEXT N
26. . E1=Elm/Conv
27.. B1=E1+P1/2

28. - BZﬁASN((Re+Hm)‘SIN(A0)/SrO)
29, IF Hm>Ht THEN B2=PI-B2
30. K1=(Re+Hs)*SIN(Bl)

31. KZ*(R&+HS)*SIN(B2)

32. K3=2‘PI-S/RG*(B1+BZ)

33, P1=K2/K1

34, P2=SIN(K3)

35, P3=C0S(K3)

36. CI%ATN(PZI(P1+P3))Mm‘uwwm
37. A1=PI-B1-Cl

38, Si=Re/Al

39, $inb1=SIN(B1)

40, Hr=(Re+Bs)‘Sinbl/Sin(Cl)*Re
41, Brf=Hr*3937/1200

42. Rr=Hr+1500

43. Rrf=Rr*3937/1200

44.  Rr=PROUND(Rr,2)
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45. Rrf=PROUND(Rxf{,2)

46. Sri=(Ro+Ht)*Sin(A1)/Sinbl
47. . GOSUB Print3 .

48, PAUSE

49, GOTO Skyscr3a

Program Operation
The skyscrecen program performs several separate functions, These axe:
1., FEntry and storage of terrain blockage data for specific locations.
2. Gencration of skyscreen profiles for specified target latitudes
a. Without refraction corrections
b. With refraction correctionms

3. Computation of relay aireraft location for long-range,.highﬁaltitude'

flights
4, Cbmputation of relay aircraft location for long~range,qlow*al;itude“
flights o '
Upon entry into the program, .the following menu displays are provided for the
operator.
A. Operating mode selection

SELECT QPERATING MODE

KEYBOARD ENTRY OF BLOCKAGE ANGIES FOR SPECIFIC SITE

GET BLOCKAGE DATA FROM A TAPE FILE

STORE BLOCKAGE DATA ON A TAPE' F1LE

PLOT ELEVATION BLOCKAGE ANGLES .VS AZIMUTH ANGLES

PRINTOUT OF ELEVATION BLOCKAGE ANGLES VS AZIMUTH ANGLES

PLOT SKYSCREEN PATTERN WITHOUT REFRACTION CORRECTION

PLOT .SKYSCREEN PATTERN WITH REFRACTION CORRECTION

PLOT SKYSCREEN PATTERN WITH AND WITHOUT REFRACTION .CORRECTION
COMPUTE POSITION OF RELAY AIRCRAFT FOR HI-ALITUTDE MISSION
COMPUTE POSITION OF RELAY AIRCRAFT FOR LO-ALTITUDE MISSION

amon o ononowomon

Entry of blockage angles from keyboard: In this mode, the program
sequentially prompts the operator to enter the elevation blockage angle for
each azimuth angle from 1 to 360 degrees. In the even the operator wishes
to enteér or cofreéct a blockage angle for any specific azimuth, a nepative
pumber is éntcred, and. the program branches to a loop which allows the
operator to enter a specific azimuth angle. From that point the program
will sequentially request cnitrics for consecutive l-degree azimuth
ingréments,
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ENTER EL ANGLE FOR AZ OF 1 DEGREE (ENTRY OF 888 ALLOWS NEW AZ ANGIE SEL).

ENTER EL ANGLE FOR AZ OF 2 DEGREES (ENTRY OF 888 ALLOWS NEW AZ ANGLE SEL)
Entry of data stored in tape file: This mode of program operation .allows
the operator to enter the name of the data file which is read into. the
elevation array, H(N). When the name has been entered, the operator

presses CONT and the program enters the.data from the selected tape file,
ENTER THE NAME OF THE TAPE FILE TO BE READ IN TO MEMORY

Storage of data on tape file: This mode of program operation allows the
operator to store data entered from the keyboard into a specified tape
file. The program requests the name of the file, and when CONT is
depressed, stores the data from. the H(N) array onto the specified tape file.

ENTER THE NAME OF THE TAPE FILE ON WHICH THE DATA IS TO BE STORED

Plot of elevation obstruction angles as a function of azimuth angle (fig. .
10.3). The coordinates for the AN/FPS-16 radar, the communications
building, and the.main building are contained in the program. .. Others may
be added by minor additions to the.program subroutine Station.

SELECT GROUND.STATION

AN/FPS-16 (34)
COMM BUILDING.

0
1
2 = MAIN BUILDING

B non

Skyscreen plots: When any of the skyscrecen plots have been selectéd, the
program requests the following information,

SELECT GROUND STATION

0 = AN/FPS-16 (34)
1 = COMM BUILDING
2 = MAIN BUILDING

The operator makes the appropriate selection and the program continues with
the following prompt message:

ENTER THE CPERATING ALTITUDE FOR WHICH THE PLOT IS DESIRED (F1)
The last operator selection is requested with the following prompt message:
MAKE PLOTTER.SELFCTION

0
1

CRT
9872A PLOTTER

nn
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Whon the appropriate operator seclection has boen made, the program starts
the data plot on the sclected display or output device.

Compute position of relay aircraft for high-altitude. support mission: The
following operator inputs are prompted by visual messages.

ENTER THE MAXIMUM GROUND STATION TO TEST AIRCRAFT RANGE (N MI)
ENTER THE OPERATING SECTOR AS.AZ1, AZ2 (CLOCKWISE FM AZ1 10 AZ2)

The operator makes the two entries sequentially as requested. The first
entry is made in nautical miles, and the second entries are made .in degrecs
(for example 30,60 t¢ represent the sector from 30 to 60 degrees azimuth as
measured from the ground station). The program computes the minimum line=~
of-sight reception point for the relay aircraft based on the highest
blockage angle in the operating sector. A 1500 meter margin is added to
the computed minimum reception altitude, and the results are displayed as:

DISTANCE TO. RELAY AIRCRAFT: 125 N MI

SL RANGE TO RELAY AIRCRAFT: 231,711 METERS

MINIMUM RECEPTION ALTITUDE: 6,971 METERS (22,871 FT)
RECOMMENDED RELAY ALTITUDE: 8,500 METERS (27,800 FT)

Compute distance of relay aircraft fer low-altitude support mission: In
this case the operator is.prompted to make the following entries. Note
that this program returns values for specific .points which may be. in
question, For example, if the route of the test aircraft were to pass down
a valley in which communications might be blocked by one or more mountains
along the test route, the following inputs would be made for each point in
question, The operator would respond to the various prompt messages shown
below by sequentially entering the distance (n mi) from the ground station
to the test aircraft, the azimuth angle (deg) from the ground station to
the test aircraft, the altitude of the test aircraft (ft), elevation of the
mountain or other obstruction along the test routine (ft), and distance of
the obstruction from the test route as measured along the line from .the
test aireraft to the ground station (n mi) would be entered scquentially as
indicated by prompt méssages shown below,

FNTER THE DIST FROM THE GROUND STA TO TEST AIRCRAFT POSITION (M MI)
ENTER THE AZ ANGLE FROM THE GROUND STA_TO POINT IN QUESTION (DEG)
ENTER THE ALTITUDE OF THE TEST AIRCRAFT (FT)
ENTER THE ELEV OF THE OBSTRUCI'ION ALONG THE TEST ROUTE (FT)
ENTER THE MAP DISTANCE OF THE OBSTRUCTION FROM THE TEST ROUTE (N MI)
The program will computé the position and minimum réception altitude for.

the relay aireraft based.on the two line-of-sight links shown in figure.
10.5. Tt will display to the operator:
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DISTANCE TO RELAY. AIRCRAFT: 175 N MI
i $I. RANGE TO RELAY AIRCRAFT: 323,526 METERS
i MINIMUM RECEPTION ALTITUDE: . 12,147 METERS (39,854 ET)
! RECOMMENDED RELAY ALTITUDE: . 13,600 METERS (44,800 FT).

be repeated for any points along the test
kage is anticipated., The recommended relay
dition should be used..

¥ The same procedure should
aircraft route where bloc
altitude for the worst case con

re
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' A CLOSED-FORM QUARTIC SOLUTION

"

|

o

! The following is a procedure known as the Descartes technique for solving a

' fourth~-degree polynomial equation. The steps given below closely parallel

P those presented in appendix 3 to reference 6. This procedure is implemented in
: subroutine Quartic, which is called by both the Lagrange and GMD of f-spheroid -
i coordinate determination programs.
i Given an cquation in the form

Ax4 + Bx? + Cx? + Dx + E =0, (A.1)

it is possible to divide by‘A and obtain a new equation,

x4 + B'x® + C'x* + D'x + E' = 0. (A.2)

Equation (A.2) is then transformed into a reduced quartic equation (an equation
in which the cubic term is eliminated) by making the substitutions :

P = 6h? + 3B'h + C’', (A.3)

Q = 4h® + 3B'h? + 2C'h + D', (A.4)

R =h* + B'h? + C'h2 + D'k + E', (A.5)

x 2y+h, (A.6)

b= - B (AT) |
Substituting equations (A.3) to (A.7) in equation (A.2) yields the reduced
quartic

y4 + Py2 + Qy + R = 0. v (A.8)

Now, by making the additional substitutions

£ = % [3(P? - 4R) - 4P3], (A.9)
g = g? [16pP? - 18P(P2 - 4R) - 27Q3], (A.10) ¢
Z=t.-.38, . (A.11)
§ = - % P, (A.12)
A-1
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a cubic resolvent may be obtained as .

(A.13)

ts + 2Pt3 +.(P? - AR)t. - Q* = 0

or
7y + f7 + g = 0. (A.14)
In the Descartes technique, a branch indicator A is computed by the velation

UL

When A > 0, the roots of the cubic resolvent are found from

z, = [- &+ 1[5 w 1%, | (A.16)
Z, = complex
Z, = complex
When A = 0 the roots of the ¢ubic resolvent are found from
Z, = 2(-g/2)3/? (A.17)
Z, = 2(gl2)3/? (A.18)
z, = 2(g/2)%% . (A.19)
And, when A ¢ 0, the roots of the cubic resolvent are found from
7, = Egcos(y/3) (A.20)
Z; = Eqcos(y/3 + 2n/3) (A.21)
Z, = E,cos(y/3 * 4n/3) (A.22)
where
(A.23) .

_ B
Eo = 2(_f/3)1/2 and Y = arcos [ - 2(_£;/27)_1/2 ._\‘

It is now possible to f£ind .the critical root (R') of equation (A.14), which is
the maximum real number of

R’ = max real root {z, + s, Z; + s, Z, + sl — (A.24)

A positive real root will always be found.
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Once R’ is obtained, two new paramecters § and B can be found as

¢ =§- [P+ R' - Q/(R')2/2 ] (A.25)
and
p=21[P+R +Q/(R)1A], (A.26)

It is now possible to factor equation (A.8) into two roots,
(y + y(R")Y2+ E)(y - y(R')V2 + B) =0, (A.27)

The solution of the two quadratics given in equation (A.27) yields four root
values for y. Thus the roots of equation (A.1) are. ...

X, =y, *+h

(A.28)
X3 =¥, th

X =y, +h

In both the Hedgley and the GMD solutions, only the real roots are meanins*“al,
and in each case two roots will be real and two will be. compiex., In th:
Hedgley solution, where the quartic solution is carried out to obtair x value
of the Lagrange multiplier @, the proper root is found to be the ¢.¢ for
which the value of target altitude is minimized. In the GMD sol stion, the
correct root is the one having the same sign as the value of r,

Variable Names

Name Description
" Alph . The root used in the Lagrange multiplier solution
Delta A in equation (A.15)
EO Ey in equation (A,23)
F2
F3 f3
Ff1 f in equation (A.9)
Gam Y in equations (A.20) to (A.23)
A-3
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Ggl g in equation (A.10)

H1 _ hin equation (AN
H2 h?
H3 . h?
I1flg 1 if real roots are to be computed from Radicl
I2flg 1 if real roots are to be computed from Radic2
" . e e
N1 B
P1 P in equation (A.3)
P2 P2
P3 . Pa
Q1 Q in equation (A.4)
Q2 Q2
Radicl Generalized radical term used to solve _equation (A.16) and
(A.27) o
Radic2 . Generalized radical term used to solve equation (A.16) and :
(A.27) .
Rp _R' term in equation (A.24) |
s1 s term in equation (A.12)
Signl Sign of the value of the first radical in equation (A.16)
Sign2 Sign of the value of the second radical in equation (A.16) ;
Sqradl _ Squaré root of Radiel }
Sqrad2 Squareé. root of Radic2 1
Sqrdel Square root of A
Sqrp $§quaré¢ root of R'
Termdb B' term in_equation (A.2) 5 
Termc c' term in equation (A.2) ‘r‘
Tesmd D' term in equation (A:2)
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Terme E' torm in equation (A,2)
X1 First root of equation (A,1)
X2, Second root of equation (A,1)
X3 Third root of equation (A.1) .
X4 Fourth root of equation _(A.1)
Zzl . First root of equation (A.14) . .
Zz2 Second root of equation (A.14)
Zz3 Third root of equation (A.14)
Algorithm

Subroutine Quartic is .called in both the Hedgley and the GMD computations of
off-spheroid latitude and altitude. The subroutine receives precomputed values
of B', C', D', and E' (Termb, Termc, Termd, and Terme) from the main program.
Equation (A.7) is implemented in step 2. Steps 3 and 4 form the power terms
for equations (A.3) to (A.5), and steps 5 to 7 directly implement equations
(A.3) to (A.5). Next, the power terms needed by equations (A.9) and (A.10) are
computed in steps 8 to 10, and the value of s in equation (A.12) is computed in
step 11. £l and Ggl correspond to the f and g terms in equatioms (A.9) and
(A.10), and these equations arc implemented in steps 12 and 13.

In steps 14 to 16, & value is computed for.A by implementing equation (A.15).
Zzl, Z22, and Zz3, the three roots of equation (A.14), are initialized to O in .
step 18, When the value of A is positive, the subroutine computes values for

Z starting at step 21 (Deltaplus). Steps 21 through 34 implement equation
(A,16), which applies when the value of A is positive. If the value of A

is 0, the program branches to Deltald (step 35) and computes the values for Zzl,
Zz2, and Zz3 using equations (A,17) to (A.19), If the computed value for A

is negative, the program branches to Deltaminus (step 47) and computes the three
roots of equation (A.,14) using the trigomometric solution shown in equations
(A.20) to (A.22)., Regardless of which of the three solutions for the three
roots of equation (A.14) is used, at least one positive real root will always
be found. The program branches from each of the three root-finding sections to
step 53 (Zplus) and determines the critical root (the maximum real root).,

Using the critical root (R'), the values of & and B are found by

implementation of equations (A.25) and (A.26). in steps 59 and 60. These values
are the right=hand members of the two factors of equacvion (A.8) shown in
equation (A.27). Since R', &, and B are all known, it is possible. to solve
each of the two bracketed terms in equation (A.27) by means of the quadratic
equation. This yields the four y roots which can then be used in equations
(A.28) to determine the four roots of equation (A.1), Step 63 forms.the
radical term of the quadratic equation for the first bracketed term of equation
(A.27)., If Radicl is positive, indicating that the two values of y will be
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found by applying equation (A.28) (steps 68 and 69). TF Radicl is negative,
indicating that the roots are imaginary, the program jumps to step 70 to find
the roots of the second bracketed term in equation (A.27)., . The same procedure
is again followed and, if the radical. (Radic2) is positive, two roeal values of
x arc computed, In the off-spheroid programs, two roots will always be real
and two will aiways be imaginary.. (If Radicl is positive, Radic2 will be
negative, or the reverse will be true.) Since only the real roots are
meaningful for this solution, the imaginary roots are not ¢omputed.. However,.
if the imaginary roots should be necded for some reason, they could casily be
found by evaluating the negative radical.

1, OQuartic:!.
2, Hi==Termb/4
3, H2=H1*H1

4, H3=H1%H2

5, P1=6%12+3*Termb*H1l+Termc

6. Ql=4%H3+3%Termb*H2+2%Termc*Hl+Termd

7. R1=H2*H2+Termb*H3+Termc*H2+Termd*H1+Terme

8. P2=P1*Pl1 :

9., P3=PlsP2

10, Q2=Q1*Ql

11, S1=-(2*P1)/3

12. Ff1=(3%(P2-4*R1)-4*P2)/3 : ’

13, Ggl=(16‘P3—18‘P1‘(P2-4*R1)-27‘Q2)/27 S "
14, F2=Ff1%Ff1 ... ' '

15. F3=F2%Ff1l

16, .Delta=F3/27+Gg1%Ggl/4

17, Signl=8ign2=1

18.,. Zz1=Z22%Zz23=0

19,. IF Delta=0 THEN Deltal

20, IF Delta<0 THEN Deltaminus

21, . Deltaplus:!

22, Sqrdel=SQR(Delta)

23. Radicl=-Ggl/2+Sqrdel

24, Radic2=Ggl/2-Sqrdel i
25. 1IF Radicl>=0 THEN 2§ i
26. Signl=-1 : ‘
27. Radicl=-Radicl

28. 1IF Radic2)>=0 THEN 31
29, Sign2=-1

30. Radic2#-Radic2 ‘
31, Zzl=Signl*Radicl®*(1/3)+Sign2*Radic2**(1/3) :
32, 7Zz2=1E99 |
33, Zz3=-1E99

34, GOTO Zplus

35. Delta0:.l

36, Radicl=-Ggl/2

37. Radic2=Ggl/2

38. IF Radicl1)>0 THEN 41
39, Signl=-1

40. Radi¢l=-Radicl

41, IF Radic2>0 THEN 44
42, Sign2=1
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g 43,
\ 44,
N 45,
: 46.
3 47 ..
. 48,
' 49,
h 50.
L;} 51~'
~“',' 52 .
' 53.
‘ 54.
> 55,
' 56.
57.
58,
59.
60,
61,
62 L[]
63,
64.
65.
66.
67 *
68,
69.
70.
71,
72,
73.
74,
75.
76.
7.
78.
79.
80,
81.
82.
83.

Radie2=—Radic2

Zz1=2*8ignl1*Radic1%*(1/3)
720=223=84gn2%Radic2%*(1/3)

GOTO Zplus
Deltaminus:l.
F0=2*SQR(~Ff1/3)

Gam=ACS(Ggl/ (2¢SQR(-F3/27)))

Z21=E0¢COS (Gam/3)

722 =E0%*COS (Gam/3+120) ...

723=E0%COS (Gam/3+240)
Zplus:|

Rp=MAX(Zz1+Sl.ZzZ+Sl,ZzS+Sl)

IF Rp<0 THEN Rp=1E99
Sqrp=SQR(Rp)
Qdr=Q1/Sqrp
T1f1g=I2£f1g=0
M1=(P1+Rp-Qdr)/2
N1=(P1+Rp+Qdr)/2
X1=X2=X3=X4=0
T1f1g=I2f1g=0
Radicl=Rp-4*Ml

IF Radicl>=0 THEN 67
I1£1g=1

GOTO 70
Sqradl=SQR(Radicl)
X1=(-Sqrp+Sqradl)/2+H1
X2=(-Sqrp-Sqradl) /2+H1
Radic2=Rp-4*N1

IF Radic2>=0 THEN 74
I2f1g=1

GOTO 71
Sqrad2=SQR(Radi02)
X3=(Sqrp+Sqrad2)/2+H1
X4=(Sqrp-Sqrad2)/2+H1
IF I1flg=1 THEN 81
JF I2flg=1 THEN 83
.Alph=MAX(X1,XZ.X3,X4)
RETURN
Alph=MAX(X3,X4)
RETURN

_ Alph=MAX(X1,X2)

84.

operator inputs.
provide the necessary inpu
the calling subprograms.

RETURN

There are no operating inmstructions
It is called from

for this subroutine since it never recaives
both the Lagrange and GMD subprograms which
t parameters, and it returns the necessary roots to
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11,
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